
Constructing Secure Protocols from
Proofs of Knowledge and Isogenies

Shai Levin
Department of Mathematics
The University of Auckland

Supervisor: Steven Galbraith
Co-supervisor: Jeroen Schillewaert

A thesis submitted in partial fulfilment of the requirements for the degree of PhD in
Mathematics, The University of Auckland, 2025.



Abstract

Constructing efficient isogeny-based protocols is an active area of research in post-
quantum cryptography. An important building block in constructing such protocols is
non-interactive zero-knowledge proofs of knowledge, which convince a verifier that a
prover possesses some secret information about an isogeny without revealing it.

Prior proofs of knowledge of an isogeny based on Σ-protocols [JD11, DDGZ22,
GPS17, BCC+23] suffer from various deficiencies. They require computing large degree
coprime N ′-isogenies, which means they must either work over larger field extensions or
choose a prime large enough to have rational N ′-torsion. Further, they suffer from poor
performance due to their small challenge space, resulting in many parallel repetitions to
achieve negligible soundness error.

This thesis presents new techniques for constructing isogeny proofs of knowledge
by constructing generic instances which encode isogeny relations. These instances
can then be implemented with a generic proof system (i.e. a zk-SNARK) to produce
non-interactive arguments for isogeny relations, such as proving knowledge of a cyclic
2n-isogeny. Compared to prior approaches, zk-SNARKs allow for several orders of
magnitude improvement to prover and verification times, and proofs are additionally
succinct, they scale sublinearly with the witness size. To motivate our approach with an
application, we construct a variant of the CGL hash function [CLG09], requiring trusted
setup, along with an associated proof of honest evaluation via generic techniques. Given
the function satisfies a conjectured notion of unpredictability, we use it, along with its
evaluation proof to construct a verifiable random function (VRF), in the random oracle
model. As an independent contribution, we prove the security of the associated generic
VRF transformation.

As an orthogonal contribution, we explore the shortcomings of various works which
construct proofs of knowledge in modern literature in a dedicated cryptanalysis section.
In particular, we show that a peer-reviewed variant of SeaSign [Kim24] is not zero-
knowledge, leading to a key recovery attack; that a proof of knowledge of a commitment
to an elliptic curve discrete logarithm [FLM22] is not sound (and propose a fixed
protocol), and that the CROSS identification protocol [BBB+24] does not satisfy their
claimed level of zero-knowledge.
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Chapter 1

Introduction

Isogeny-based cryptography was first introduced with the CGL hash function [CLG09] by
Charles, Goren and Lauter, where the core hardness assumption is that, given two isogen-
ous elliptic curves, it is hard to recover an isogeny between them. Several other isogeny-
based protocols were proposed, including SIDH [JD11], which strengthens the assumption
by giving additional torsion point information; CSIDH based on group actions [CLM+18];
SQI-Sign, a signature scheme based on endomorphism rings [DKL+20]; its many variants
which rely on new tools for computing evaluation of large prime degree isogenies via
higher dimensional representations [BDD+24, NOC+24, DF24, DLRW24], and others,
such as [FMP23, Bas24a, Bas24b, BMP23, Ste22]. Even though there was a recent
cryptanalysis breakthrough on SIDH [MMP+23, CD23, Rob23], other cryptosystems (in-
cluding those cited above) remain unaffected. Additionally, a variety of advanced schemes
and protocols based on isogenies, such as oblivious transfer and exotic signatures, have
been proposed in the literature, such as [BKV19, BKP20, LGD21, BD21, BDK+22].

A recent development in isogeny-based cryptography has been the proposal of several
verifiable random functions (VRFs) [Lai24, Ler23]. VRFs are a cryptographic primitive
which allows an evaluator of a pseudorandom function to prove the correctness of their
output. A VRF is instantiated with a public-private key pair (pk, sk), and on the input
of a message m and private key sk, outputs a pseudorandom value h and proof π. A
verifier may then take (pk,m, h, π) and accept or reject. VRFs must satisfy residual
pseudorandomness (a related but distinct notion compared to the pseudorandomness
of a PRF) which states that for a new message m, the output h is indistinguishable
from random, even if an adversary has already seen evaluations and proofs for arbitrary,
distinct messages. VRFs also satisfy unique provability, which means that two distinct
evaluations of the VRF under the same message and secret key cannot both have
accepting proofs.

First introduced in [MRV99], VRFs have found applications in blockchain consensus,
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2 CHAPTER 1. INTRODUCTION

such as in Algorand [CM19], where a VRF is used after each block in a lottery to determ-
ine who forms the next block; distributed randomness beacons [CMB23a, CMB23b],
where publicly generated randomness can be generated in a distributed, trust-less
computation; and DNSSEC [GNP+15].

Until recently, VRF constructions have been based exclusively on classical assump-
tions which require the hardness of computing discrete-logarithms or integer factoring,
and thus are not post-quantum secure. Hence, it is of interest to propose candidates
for post-quantum VRFs. Post-quantum secure VRFs have been proposed from lat-
tice [EKS+21, ESLR23] and hash [BDE+22, EEK+23] assumptions. We note that the
constructions in [EKS+21, EEK+23] are short-term VRFs, which trade off long-term
usability for higher efficiency. Another short-term VRF has been proposed in [BDE+22],
but was broken in [BSN24]. We briefly discuss the isogeny-based VRFs below. Lai’s
construction is based on a Naor-Reingold type PRF [NR99], hardness is based on
decisional Diffie-Hellman (DDH) in the effective group action setting [ADMP20] and
Lai introduces new proof systems to realise verifiability. In contrast, Leroux’s VRF
evaluations are large prime degree isogenies computed via the Deuring correspondence
and proven correct by providing a higher dimensional representation of that isogeny.
Leroux’s VRF relies on a one-more type computational assumption, and results in
the smallest proof sizes in the post-quantum setting (cf. [Ler23, Table 1]). It is worth
noting that post-quantum VRFs in the literature either suffer from poor efficiency, or
rely on novel computational assumptions – hence there is a trade-off between minimal
assumptions and efficiency.

Returning to the wider context of isogeny cryptosystems, every isogeny computation
starts from a public curve. In the literature, the candidate is usually one of the j-
invariants 0 or 1728 with a known endomorphism ring. In isogeny-based constructions,
sampling an elliptic curve without knowing its endomorphism ring [BBD+22, MMP22],
is currently a computationally infeasible task, and is essential in some constructions
and applications [CLG09, LGD21, BD21, AEK+22, Ste22]. From a cryptanalytical
perspective, having a public curve with an unknown endomorphism ring significantly
reduces the information an attacker/analyst may have. A recent proposal [BCC+23]
suggests a trusted setup ceremony to resolve this problem. In the ceremony, every party
computes an isogeny path from the previous curve to another, produces a proof that
the isogeny was generated honestly, and disposes of the path. They then publish their
new curve and associated proof publicly, which all parties verify. Once every participant
has completed their round, the ceremony outputs the final curve. As long as at least
one party behaves honestly, recovering the final curve’s endomorphism ring is difficult,
even if the rest of the participants collude.

However, generating a zero-knowledge proof of an isogeny path is not a trivial task
in general. In the realm of group actions, it is not difficult to achieve and the proofs for
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more sophisticated relations can be made [BKV19, BKP20, BDK+22, ABCP23, Lai24].
However, out of realm of the group actions, the task has been known to be difficult to
achieve either soundness (for the exact relation) or (statistical) zero-knowledge, with
some protocols requiring ad-hoc security assumptions. The prior state-of-the-art works
based on Σ-protocols are given by [JD11, DDGZ22, GPS17, BCC+23], yet there is still
room for improvement. Suppose 300 participants run the ceremony single-threaded on
a normal machine1, the protocol will take roughly an hour to complete for λ = 128,
and 13 hours for λ = 256. Other protocols, would also benefit from zero-knowledge
proofs for other, more tailored isogeny relations. In some cases, these proofs are not
believed to be possible with existing techniques via Σ-protocols. One example of which
is [Bas24a], the initial preprint publication of which included a split-KEM and OPRF
construction, which has been removed since the security of these constructions would
require a proof of honest evaluation of a secret degree isogeny, which is not known to be
possible via Σ-protocols.

Historically, it was assumed that tailor-made proof systems for isogeny relations
performed better than generic ones. However, the developments of generic proof systems,
such as zk-SNARKs2, which allow a prover to prove or argue the knowledge of any
NP relation, have advanced the field significantly in recent years. zk-SNARKs allow a
prover to produce a publicly-verifiable proof in a zero-knowledge and non-interactive
manner. Moreover, the proof size is succinct, sublinear in the size of the witness, and the
verification time is much shorter than producing the proof. The area of zero-knowledge
proof systems has been very active – see [Tha23] for a recent survey. To quote from the
preface of this survey:

“A major benefit of taking 7 years to complete this manuscript is the many
exciting developments that can now be included. This survey would have

looked very different had it been completed in 2015, or even in 2020 (over
1/3 of the content covered did not exist 7 years ago). During this period, the

various approaches to the design of zero-knowledge arguments, and the
relationships between them, have come into finer focus. Yet owing to the

sheer volume of research papers, it is increasingly challenging for those first
entering the area to extract a clear picture from the literature itself.”

Indeed, the area continues to develop, even since 2023, and as of the time of writing
this thesis in early 2025, there are many new candidates for the post-quantum state-
of-the-art [XZS22, ZCF24, BFK+24, GLH+24, ACFY24]. Several of such SNARKs
are also field-agnostic, which operate using expander codes and do not impose any
restrictions on the underlying finite field. Additionally, several techniques have been

1Specifically, an ARM Apple M1 Pro
2zero-knowledge, succinct, non-interactive, arguments of knowledge



4 CHAPTER 1. INTRODUCTION

introduced which provide a blueprint to proving stronger soundness guarantees of
the non-interactive proof systems [KPT23, FFK+23]. In general, these generic proof
systems work well with symmetric primitives and have applications in post-quantum
cryptosystems [ZCD+20, GMNO18, DDOS19, BDK+21], and privacy-preserving block-
chain protocols such as [BCG+14]. Due to their flexibility, protocols can benefit from
the advances in proof systems without major changes to the underlying protocol (simply
by changing the proof system, provided they support the same security guarantees and
language of computation).

Applying generic proof systems to isogeny-based cryptography remains uncommon.
Though there exists a verifiable delay function from isogenies using a SNARG3 [CSRT22],
it is not in zero-knowledge, and the result remains theoretical in nature, with unclear
practicality. In particular, due to the complexity of computing isogenies, size and
the structure of the operating field, using generic proof systems in isogeny-based
cryptography appears challenging and impractical. Generic proof systems have been
applied to protocols utilising fields of bit length at most 256-bits, whereas many isogeny-
based protocols utilise field extensions of a field of upwards of 512-bits. Due to these
factors, it was previously assumed these proof systems did not scale well with isogeny-
based protocols. In the isogeny community, the plausibility of the following question
was largely disputed:

Can generic proof systems serve as a practical tool in isogeny-based
cryptography?

1.1 Contributions

The primary contribution of this thesis is to answer the question above affirmatively. We
first introduce the relevant preliminaries and notation in Chapter 2. Along the way, and
as a warm up, we briefly explore the use of Σ-protocols to construct proofs for generic
relations on Pedersen commitments over elliptic curve groups. In the final chapter,
we cryptanalyse various protocols based on Σ-protocols, showing that the security
properties of which are often misunderstood or improperly stated. In some cases, such
as with [Kim24], this can be disastrous, leading to a key-recovery attack, whereas in
others [BBB+24], the security properties are simply not as strong as previously thought.

Proving arithmetic statements on Pedersen commitments In Chapter 3, we
collect and present various Σ-protocols for proving arithmetic statements on Pedersen
values, which are either obtained from [WTs+18, Sch91] or appear as folklore construc-

3succinct, non-interactive argument
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tions. In particular, given a Pedersen commitment C = gxhr = Commit(x; r), we show
how to prove:

• Knowledge of an opening (Section 3.1): Given C, knowledge of x and r such
that C = gxhr.

• Equality of Pedersen commitments (Section 3.2): Given C1, C2, knowledge
of x, r1, r2 such that C1 = gxhr1 and C2 = gxhr2 .

• Multiplicative relation of Pedersen commitments (Section 3.3): Given
C1, C2, C3, knowledge of x1, x2, r1, r2, r3 such that C1 = gx1hr1 , C2 = gx2hr2 and
C3 = gx1·x2hr3 .

• Commitments opens to a non-zero value (Section 3.4): Given C, knowledge
of x and r such that C = gxhr and x ̸= 0.

We then show how to use these proofs to build a generic proof system for Rank 1
Constraint Systems (R1CS) using Pedersen commitments and Σ-protocols in Section 3.5.
R1CS is a widely used relation for expressing arbitrary arithmetic statements, which we
use in the following chapters.

Proving isogeny relations with generic proof systems In Chapter 4, we show
how to construct efficient proofs of knowledge for three isogeny relations using generic
proof systems. In particular, in Sections 4.1 and 4.2, we show how to prove:

Rℓk-IsoPath = {((E0, E1), ϕ) | ϕ : E0 → E1 is a cyclic isogeny, deg ϕ = ℓk, k ∈ Z}

via R1CS instances which encode the language of ℓk-isogenies, but we also extend this to
the case that ϕ is cyclic. We include the original approach of [CLL23] as a part of this
thesis, but then introduce an improved approach first described in [LP24] via radical
isogenies [CDV20]. We focus on the case where ℓ = 2, but the approach extends to
arbitrary ℓ provided the existence of radical isogeny formula for degree ℓ. We include a
rough comparison of the advantages of our generic approach in Table 1.1. We note that
this is not directly an apples-to-apples comparison, since Σ-protocols require running
the protocol over a larger field. We also believe that we can do better by using a more
efficient FFT-based proof system over Fp2 , such as WHIR [ACFY24].

Next, also originally appearing in the work of [LP24] and included in this thesis,
in Section 4.4 we introduce a novel variant of the CGL hash function [CLG09] using
radical isogenies (we call this CGL) and we show how to construct R1CS instances for
the following relation:

RCGL = {((E0, En);m) | En = CGL(E0,m)} ,
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log p Prov. Time (ms) Verif. Time (ms) Proof Size (kB)
[BCC+23] 434 18,150 1,930 191.19

Ours (estimated) 256 45 20 320

Table 1.1: Performance of our radical R1CS over Fp for proving knowledge of a cyclic
2705-isogeny when applied to the protocol of [BFK+24], compared to the performance
of the Σ-protocol of [BCC+23]. We obtain our estimates based on the performance
of [BFK+24] on instances of size < 212, since 5 · 705 ≈ 211.79.

Lastly, looking ahead to our VRF construction, in Section 4.5, we construct R1CS
instances for the relation:

RCGL// = {((E1, E2, F1, F2);m) | E2 = CGL(E1,m) ∧ F2 = CGL(F1,m)} .

These R1CS, when applied to an appropriate proof system, yield efficient proofs of
knowledge for the above relations.

Isogeny-based VRFs from Unpredictability Assumptions We start Chapter 5
by introducing unpredictable functions in Section 5.1, which are functions that satisfy a
given one-more type computational hardness assumption that we describe in Problem 3.
In Section 5.2, we prove that these functions, together with an associated non-interactive
zero-knowledge proof of knowledge of honest evaluation, are enough to build a secure
VRF in the random oracle model. We go on by instantiating unpredictable functions
via our variant of the CGL hash function in Section 5.3. Using the proof system
from Section 4.5, that two isogeny walks have been computed using the same input, we
can add verifiability to our scheme. This approach, which also appears in [LP24], yields
a very fast protocol in terms of evaluation and verification cost. See Table 5.2 for a
comparison with other VRF works in the literature. The recent VRF from isogenies
proposed by Leroux [Ler23] uses the interplay of the Deuring correspondence with
higher dimensional isogenies to prove and verify the correct output. Their protocol is
also based on a new one-more type assumption and leads to particularly small proof
sizes. In contrast, using [BFK+24] as the underlying proof system, our VRF evaluation
time is expected to be much faster than the one in [Ler23], while the verification time
is comparable. Furthermore, our protocol enjoys very small public key sizes. On the
downside, our proof size is considerably larger, but strongly depends on the SNARK
used. While [BFK+24] still yields large proof sizes in our setting, the state-of-the-art
has developed significantly even within the past 24 months. We expect that further
improvements to expander code multi-linear commitments will continue to improve
estimated proof sizes. At present our protocol requires a starting curve of unknown
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endomorphism ring, obtained via a trusted setup ceremony such as [BCC+23]. VRFs
are typically applied in the context of multi-party protocols, where this ceremony may
be performed in the setup phase. However, it is possible that parameters may be
constructed such that the protocol may achieve full unique provability without the need
for a trusted setup, as discussed in Section 5.3.2.

In Section 5.4, we present an alternative instantiation of our VRF construction
from unpredictable functions. This approach was, for comparative reasons, designed
to leverage the use of Σ-protocols, rather than generic proofs. Instead of computing
isogenies in a bit-by-bit CGL style approach, we compute them via a CGL variant using
Vélu’s formula as in [DPB24]. To realise verifiability, we introduce a new Σ-protocol
that proves two isogenies have been computed using the same input key. This proof
can be seen as a extension of the proof of isogeny knowledge introduced in [DDGZ22,
Section 3] with challenge space of size 3, and as a (more efficient) simplification of the
proofs of parallel isogeny from [BKW20, Bas23]. This proof requires the use of coprime
N ′-isogenies, as in SIDH4 [JD11]. While this VRF is not competitive with the CGL and
SNARKs design from Section 5.2, we add it to our work as a comparative benchmark to
our other instantiation. We further believe that the new proof system is of independent
interest for other isogeny-based protocols, where one wants to prove that two isogenies
are computed from the same input, even if the isogenies are not necessarily parallel
sides of an SIDH square.

Cryptanalysis of Σ-protocols In Chapter 6, we investigate various shortcomings in
several protocols based on Σ-protocols:

• In Section 6.1, we show that the protocol from [Kim24], a variant of SeaSign [DG19],
is not zero-knowledge, and construct a key-recovery attack against the protocol.
The content of this section also appears in [Lev25a].

• In Section 6.2, we show that the protocol from [FLM22] does not satisfy 3-special
soundness, and hence is not provably sound in its current form. We also discuss a
practical attack against its implementation, which only verifies a subset of the
parallel repetitions. We go on to construct a fixed version of the protocol which is
provably 2-special sound, and zero-knowledge in Section 6.3. The content of these
sections also appear in [CLR24].

• In Section 6.4, we show that the NIST additional signatures round 2 candidate,
CROSS [BBB+24], does not satisfy its claimed variant of zero-knowledge, and

4We emphasise that although we are using the label SIDH, our constructions are not susceptible to
the SIDH attacks from [CD23, Rob23, MMP+23]. The latter use extra torsion information to recover
the secret isogeny, which is not provided as part of our protocols.
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that the protocol can at best only satisfy weak computational zero-knowledge.
The content of this section also appears in [Lev25b].



Chapter 2

Background

2.1 Notation and Fundamental Definitions

Mathematical Notation We refer to the set {1 . . . n} as [n], and the set of integers
between a and b (inclusive) as [a, b]. We will, on occasion, given an indexed set of
vectors, use v(j)

i to refer to the i-th entry of the j-th vector.
N denotes the set of natural numbers, Z the set of integers, Q the set of rational

numbers, and R the set of real numbers. F denotes an arbitrary field, and F its algebraic
closure. For a prime power q, we denote the finite field of q elements as Fq, and the
integers modulo n interchangeably as Z/nZ or Zn. Given a ring (or field) R, we refer
to its multiplicative group as R×.

The n-adicity of an integer x is the largest power of n that divides x. For example,
the 2-adicity of 12 is 2.

We use the standard notation for binary operators: ∧ is logical AND, ∨ is logical
OR, ¬ is logical NOT.

We may use ℓ and N interchangeably to refer to degrees of isogenies. ℓ is typically a
small prime, and N is typically a large (cryptographically sized) smooth number (often
a prime power).

Cryptographic Notation We denote security parameter for cryptographic properties
as λ, which is a natural number. Typically this is fixed across a protocol (for example,
a zero-knowledge protocol must satisfy the same security level λ for both soundness
and zero-knowledge).

An algorithm is a Turing machine. We say that an algorithm is probabilistic
polynomial time (PPT) if it runs in polynomial time in the security parameter λ, and
may sample random coins from some distribution.

9
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We use negl(·) to denote a negligible function, and poly(·) to denote a polynomial
function.

In protocol descriptions, we use a← B to denote assignment of algorithm B’s output
to variable a, and a conditional equality check a ?= b which equals 1 if a is equal to b
and 0 otherwise. Given a finite set S, we denote the operation of sampling an element x
uniformly at random from S as x←$ S. We occasionally use a := b to denote ”defined
as”, where a is defined as b (similar to the assignment arrow, but also returning the
newly defined variable).

We denote random oracles by O, which are typically assigned uniformly at random
from the set of functions on the respective input/output domains. We denote AO as
PPT algorithm A being given query access to O. A PPT algorithm can only make
polynomially many queries to O. If an algorithm’s oracle access is implicit, it may be
omitted.

Perfect Indistinguishability We say that a pair of probability distributions X and
Y are identically distributed, or perfectly indistinguishable, if X = Y .

Statistical Indistinguishability We say that a pair of probability distributions X
and Y on a set S are statistically indistinguishable with parameter λ, if the statistical
distance (or total variable distance), given by the formula

∆(X,Y ) = 1
2
∑
x∈S

∣∣Pr[x← X]− Pr[x← Y ]
∣∣,

is negligible λ.

Computational Indistinguishability We say that a pair of probability distribu-
tions X and Y are computationally indistinguishable with parameter λ, if for all PPT
distinguishers D, the following holds:∣∣Pr[D(X) = 1]− Pr[D(Y ) = 1]

∣∣ ≤ negl(λ).

where D is given query access to polynomially many samples of X or Y .

2.1.1 Commitment Schemes

We include the definitions of commitment schemes here as they are relevant to sev-
eral chapters of this thesis. A commitment scheme is a tuple of algorithms: Π =
(SetUp,Commit,Open) which are defined over a message space M⊆ {0, 1}n as follows
(note that where implicit, we omit the public parameters pp in the call to the algorithms):
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1. SetUp(1λ)→ pp which takes as input a security parameter λ and outputs public
parameters pp for the commitment scheme. Typically the public parameters define
the message space M, commitment space C and the masking randomness space
N .

2. Commit(m; pp)→ (comm, r) which takes as input a message m ∈M and outputs
a commitment comm ∈ C and masking randomness r ∈ N . Slightly overloading
notation, we write comm← Commit(m; r) to denote resulting commitment for a
predetermined choice of r.

3. Open(comm,m, r; pp)→ {0, 1} which takes as input a commitment comm, message
m and masking randomness r and outputs a bit. If the output is 1, the message
m is said to be a valid opening of the commitment comm.

For the purpose of this thesis, a commitment scheme is said to be secure if it is
computationally binding and {perfectly, statistically, computationally} hiding. We define
these properties below:

Definition 1 (Computationally Binding). A cryptographic commitment scheme Π =
(SetUp,Commit,Open) is said to computationally binding if an adversary cannot produce
two distinct messages m ≠ m′ that open to the same commitment comm with non-
negligible probability. Formally, for all PPT adversaries A, and all λ ∈ N, the following
holds:

Pr
[

Open(comm,m, r; pp) =
Open(comm,m′, r′; pp) = 1 ∧m ̸= m′

∣∣∣∣ (comm,m,m′, r, r′)← A(pp),
pp← SetUp(1λ)

]
≤ negl(λ)

where the probability is taken over the randomness of A and SetUp.

Definition 2 (Hiding). A commitment scheme Π = (SetUp,Commit,Open) is said to
be {perfectly, statistically, computationally} hiding if, for all λ ∈ N, public parameters
pp← SetUp(1λ), and distinct m,m′ ∈M, the following probability distributions

{Comm(m, r; pp) | r ←$N}, and {Comm(m′, r′; pp) | r′ ←$N}

are {perfectly, statistically, computationally} indistinguishable.

Pedersen commitments, first introduced in [Ped92], are relevant to Chapter 3 and Sec-
tion 6.2. We describe the Pedersen commitment scheme below in Figure 2.1 generically
for groups of prime order. We note that Pedersen commitments are not computationally
hiding in the presence of a quantum adversary (who can perform Shor’s algorithm [Sho97]
to compute discrete logarithms of a group), and hence they are not post-quantum secure.
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SetUp(1λ)
1 : Gq, g, h← SetUpGroup(1λ)
2 : return pp := (q,Gq, g, h)

Commit(m; pp)
1 : Parse pp as (q,Gq, g, h).
2 : r ←$ Zq // or given as input to algorithm

3 : comm := gm · hr

4 : return (comm, r)

Open(comm,m, r; pp)
1 : Parse pp as (q,Gq, g, h)
2 : assert m, r ∈ Zq, comm ∈ Gq

3 : comm′ := gm · hr

4 : return comm ?= comm′

Figure 2.1: The Pedersen commitment scheme [Ped92] defined generically for groups
of prime order. Let SetUpGroup be a black-box procedure which takes as input 1λ and
outputs a group Gq of prime order q (with group operation ·) where computing discrete
logarithms classically is computationally infeasible; as well as two generators g, h of Gq

such that the discrete logarithm of g with respect to h is unknown.

Theorem 1 (Folklore). The Pedersen commitment scheme described in Figure 2.1 is
computationally binding (assuming the hardness of computing discrete logarithms) and
perfectly hiding.

Pedersen commitments also satisfy the additive homomorphic property, meaning
that

comm(m1; r1) · comm(m2; r2) = comm(m1 +m2; r1 + r2),
for all m1,m2 ∈ M and r1, r2 ∈ N , where multiplication on the left hand side is the
underlying group operation of C(= Gq) (in the case of elliptic curve groups, this is point
addition; and in the case of the ring of integers modulo q, this is modular multiplication),
and the addition is performed in the message spaceM(= Zq) as an additive group. Note
that in this section we refer to this group operation multiplicatively, and we continue to
do so in Chapter 3, but we will refer to the group operation additively in Sections 6.2
and 6.3, as the focus is on elliptic curve operations, where the multiplicative operator
may cause confusion.
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2.2 Zero-Knowledge Proofs of Knowledge

Let R : X ×W be a relation with input set X and witness set W defining the NP-
language L = {x ∈ X : ∃w ∈W s.t. (x,w) ∈ R}. Zero-knowledge proofs are protocols
between two parties, where a prover P tries to convince a verifier V that, given some
x ∈ X, that x ∈ L, i.e. that there exists (or it knows) a witness w ∈ W such that
(x,w) ∈ R [GMR89].

If this witness does indeed exist and the proof is generated correctly, then the verifier
should accept the proof. On the other hand, if no such witness exists, the prover should
not be able to convince a verifier that it does. These fundamental security conditions are
called completeness and soundness of the zero-knowledge proof, respectively. Knowledge
soundness, a stronger notion of soundness first introduced in [BG93], does not only
convince a verifier that the witness exists, but also that the prover knows it. Formally,
this is shown by defining an algorithm called the extractor, which has oracle access
to the prover and tries to derive the witness from this interaction. Finally, the notion
of zero-knowledge guarantees that the verifier does not learn any information about
the witness, except from what it can derive from publicly available data. This last
property is proven by showing the existence of a simulator, which can generate protocol
transcripts which are indistinguishable from those between an honest prover and verifier
on the same instance, even without knowing the witness.

Zero-knowledge proofs may be interactive protocols, but can generally be made non-
interactive in the Random Oracle Model [BR93] via the Fiat-Shamir transform [FS87],
or its many variants [BCS16, Unr17]. We are primarily interested in non-interactive
zero-knowledge proofs of knowledge in this work and will, on occasion, abbreviate
them as either NIZK or NIZKPoK. We further write H or O for an invocation of a
random oracle. We outline general definitions of the security properties of a NIZKPoK
below (in the Random Oracle Model). We refer the reader to [GOP+23, AFK23] for a
more comprehensive treatment of non-interactive proofs obtained via the Fiat-Shamir
transform.

Definition 3 (Completeness). For every (x,w) ∈ R, honest prover P and honest verifier
V , it holds that

Pr[V O(x, π) = 1 | π ← PO(x,w)] = 1

Definition 4 (Soundness). For any x /∈ L, (potentially malicious) PPT prover P and
honest verifier V , it holds that

Pr[V H(x, π) = 1 | π ← PH(x)] ≤ negl(λ)

Definition 5 (Knowledge Soundness). We say that a protocol is knowledge sound, with
knowledge error κ, if there exists a PPT extractor E and positive polynomial q such
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that, for every x, PPT P̃ , λ ∈ N,

q(|x|) · Pr[(x,w) ∈ R | w ← EP̃ (x, 1λ)] ≥ Pr[V H(x, π) = 1 | π ← P̃H ]− κ(|x|, λ).

Where the extractor E may program the responses to random oracle queries of P̃ , and
either get a response of the next query or output π, at which point P̃ goes to the start
of its computation with the same randomness and auxiliary input.

Definition 6 (Zero Knowledge). A non-interactive protocol (P, V ) is {computational,
statistical, perfect} zero-knowledge (with security parameter λ) in the random oracle
model, if there exists a PPT simulator S, such that for every (x,w) ∈ R, the following
distributions:

{π ← SH(x)}, and {π ← PH(x,w)},

are {computationally, statistically, perfectly} indistinguishable, where the distributions
are taken over the uniformly random instantiation of H and the randomness of P .

A common approach to constructing signature schemes is by applying the Fiat-
Shamir transform to an interactive proof system, and adding the message to the query
to the random oracle. In order to guarantee such a protocol yields a signature scheme
that is fully existentially unforgeable under chosen message attack (EUF-CMA), the
underlying NIZKPoK must satisfy a stronger notion of adaptive knowledge soundness,
also called simulation extractability. While Definition 5 is defined for a static adversary P̃
for a fixed instance x, adaptive knowledge soundness requires that knowledge soundness
holds even when the prover is allowed to choose the instance x on the fly based on the
random oracle queries it has made so far. For a formal definition, see [AFK23, Defn.
10] [GOP+23, Defn 2.8].

In this work, we consider NIZKPoKs constructed via two approaches, which are
common in the literature. Those constructed from the Fiat-Shamir transformation of
Σ-protocols, and those constructed from non-interactive transformations of interactive
oracle proofs (IOPs). The key differentiating factor is that the latter results in a
non-interactive protocol which is also succinct: the proof size scales polylogarithmically
in the size of the witness. We shall briefly discuss other differentiating features of these
two approaches below, and outline the definitions of the underlying protocols in their
respective sections.

zk-SNARKs versus NIZKPoKs from Sigma-protocols While Σ-protocols prov-
ide the gold-standard approach for constructing cryptographic protocols which naturally
arise from interactive proofs (such as verifiable random functions, identification protocols
and digital signatures), they do not always offer a practical level of efficiency, particularly
in the case of the post-quantum setting of isogenies. Indeed, in this work we will use
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succinct non-interactive arguments of knowledge (zk-SNARKs) to prove knowledge of
isogeny paths. It is worth noting that the underlying IOP is often multiple round (even
variable round in the length of the input), and the simulation extractability of the
resulting non-interactive protocol is not always well understood, but recent frameworks
have been proposed to address this [KPT23, FFK+23].

2.2.1 Sigma protocols

For a comprehensive introduction to Σ-protocols, we refer the reader to [Dam10]. We
introduce the basic definitions and security properties of Sigma protocols here. A
Σ-protocol (or Sigma protocol) for a relation R is a 3-round public coin interactive proof
performed between prover P on input (x,w) and a verifier V on input x:

Commitment: A prover sends a message comm to the verifier.

Challenge: On receiving comm sends a uniformly sampled chall←$ C from a challenge
space C.

Response: on receiving chall, sends a response resp.

Verification: After the 3 rounds of interaction, on input (x, comm, chall, resp) the
verifier outputs either 1 (accept) or 0 (reject).

A Σ-protocol must also satisfy completeness, special soundness, and honest verifier
zero-knowledge. In the context of sigma protocols, completeness holds if a verifier always
accepts an honest prover. We include two variants of the latter property, which are
called weak and strong honest verifier zero-knowledge. Looking ahead, these are relevant
to Section 6.4. In some cases it is required to use a sigma protocol which satisfies the
stronger variant, such as in the construction of fully-anonymous ring signatures [AOS02].
The only difference is that in the strong variant, the witness to the instance is included
in the distributions. We note that the properties are equivalent if the sigma protocol is
statistically or perfectly zero-knowledge, and differ only in the computational setting.
Hence, where a protocol is perfectly or statistically zero-knowledge, we may omit this
distinction (such as in Section 6.3).

Definition 7 (Strong Honest Verifier Zero-Knowledge (HVZK)). A Σ-protocol is said
to be strong {perfectly, statistically, computationally} zero-knowledge if there exists a
PPT simulator S who makes at most polynomially many queries to the random oracle
O, such that for every (x,w) ∈ R and λ ∈ N, the following distributions are {perfectly,
statistically, computationally} indistinguishable:

{(x,w, ⟨PO(x,w),VO(x)⟩)}, and {(x,w,SO(x))}.
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where ⟨PO(x,w),VO(x)⟩ is the transcript of a protocol execution between an honest
prover and verifier, and the distributions are taken over the random coins of P, V and
S.

Definition 8 (Weak Honest Verifier Zero-Knowledge (HVZK)). A Σ-protocol is said
to be weak {perfectly, statistically, computationally} zero-knowledge if there exists a
PPT simulator S who makes at most polynomially many queries to the random oracle
O, such that for every (x,w) ∈ R and λ ∈ N, the following distributions are {perfectly,
statistically, computationally} indistinguishable:

{(x, ⟨PO(x,w),VO(x)⟩)}, and {(x,SO(x))}.

where ⟨PO(x,w),VO(x)⟩ is the transcript of a protocol execution between an honest
prover and verifier, and the distributions are taken over the random coins of P, V and
S.

The greatest advantage of Σ-protocols is their notion of knowledge soundness, called
2-special soundness, or t-special soundness which generalises the former. This property
is convenient for proving knowledge soundness of the resulting protocol.

Definition 9 (t-special soundness). There exists a PPT algorithm E called the extractor,
which given instance x, and t valid distinct transcripts

[(commi, challi, respi)i∈[t]]

where commi = commj (with a common first message), challi ̸= challj for all 1 ≤ i <
j ≤ t, E outputs w such that (x,w) ∈ R.

When the Fiat-Shamir[FS87] transform is applied to a Sigma-protocol which is
complete, t-special sound, and honest verifier zero-knowledge, the resulting protocol is
a NIZKPoK with zero-knowledge, and knowledge error t−1

c where c is the size of the
verifier’s challenge space.

2.2.2 zk-SNARKs

In the (explicitly programmable) random oracle model, a zero-knowledge non-interactive
succinct argument1 of knowledge (zk-SNARK) for a relation R = {(x,w)} is a tuple
(P, V ) where P, V are PPT algorithms with access to a random oracle O which satisfy
the properties of Definitions 3 to 6, and are also succinct, as defined below.

1Typically, a non-interactive random-oracle proof system is a proof (NIZKPoK) only if the definition
of soundness holds given a computationally unbounded prover, and is otherwise called an argument. We
may use the terms interchangeably to refer to both.
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Definition 10 (Succinctness). A proof system (P, V ) for a relation R is succinct, if,
for any (x,w) ∈ R and corresponding proof π ← PO(x,w), π grows polylogarithmically
in w. In particular, |π| = poly(λ, |x|, log(|w|)).

The zk-SNARKs we consider in this work are transparent2, in the random oracle
model, and constructed from Interactive Oracle Proofs (IOPs) via the BCS trans-
form [BCS16].

Interactive Oracle Proofs An interactive oracle protocol between two PPT al-
gorithms A and B over k rounds is a protocol where at the ith round, A sends an i-th
message mi to B, who responds with a random access oracle fi which may be queried in
consequent rounds. After k rounds, A either accepts or rejects (see [BCS16] for details).

An Interactive Oracle Proof (P, V ) for a relation R with round complexity k and
soundness s satisfies the following properties:

• Completeness: For every (x,w) ∈ R, (P (x,w), V (x)) is a k(x)-round interactive
protocol with accepting probability 1.

• Soundness: For every x /∈ L(R) and every P̃ , (P̃ , V (x)), is a k(x)-round interactive
oracle protocol with accepting probability at most s(x).

Interactive Oracle Proofs (IOPs), introduced by Ben-Sasson et al [BCS16], are a
generalisation of both Interactive Proofs (IPs) and Probabilistically Checkable Proofs
(PCPs). One may note that IOPs directly generalise PCPs to multiple rounds. The
motivation behind the construction of IOPs is that of efficiency, by minimising redund-
ancy that might be present in a traditional 1 round PCP construction. Analogously
to IPs and PCPs, an IOP may also satisfy the properties of zero-knowledge, proof
of knowledge, and succinctness, as well as a transformation which performs similarly
to the Fiat-Shamir transform [FS87]. Thus, zk-SNARKs can be obtained from IOPs.
Intuitively, succinct proofs are achievable when the prover sends random access oracles,
which are then realised using efficient polynomial commitment schemes (PCS), which
allow a prover to commit to a polynomial and later open it at a point of the verifier’s
choice (without necessarily revealing the polynomial).

Theorem 2 (BCS Transform). There exists a transform T that inputs an IOP (P, V )
and outputs a non-interactive argument of knowledge (P ∗, V ∗) that preserves proof
of knowledge and succinctness. Moreover, when the underlying IOP is statistically
zero-knowledge, the resulting protocol is statistically zero-knowledge under the explicitly
programmable random oracle model.3

2Information theoretic, not requiring any trusted setup or computational assumptions.
3In particular, the extractor in the transformation T is straight-line, and does not apply the forking

lemma.
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Proof. See [BCS16, Sec. 6]

In this work, we are interested in IOPs that are also transparent. That is, secure in
the absence of the common reference string (CRS) model, in which protocols require
trusted setup.

2.2.3 Rank-1 Constraint Systems

SNARKs are designed to work for generic relations, which can encode arbitrary com-
putations. A common relation used to encode general arithmetic circuits is Rank-1
Constraint Systems (R1CS). First, we define the coordinate-wise Hadamard product.
Given two vectors in Fnq : a1

. . .
an

 ◦
 b1
. . .
bn

 =

a1b1
. . .
anbn


Now, the R1CS relation is defined as follows:

RR1CS = {(A,B,C,v, q), (w) | Az ◦Bz = Cz, z = (1 v w)}.

R1CS is parameterised by an underlying finite field Fq, and consists of instance-witness
pairs ((A,B,C,v),w) where A,B,C ∈ Fm×(n+1)

q and v,w are vectors over Fq such that

Az ◦Bz = Cz

for z := (1 v w) ∈ Fn+1
q . Conceptually, A,B,C encode constraints on variables

v,w; where v contains (public) auxiliary input, and w contains both secret input
and intermediate variables in a computation. R1CS may encode arithmetic circuit
satisfiability. In loose terms, in R1CS, each row can encode: linear expression × linear
expression = linear expression. In Chapter 4, we encode several isogeny relations in
compact R1CS instances, which when combined with a suitable zk-SNARK, can be
used in an isogeny-based protocol, such as our Verifiable Random Function (VRF)
construction in Section 5.3. In Section 3.5, we describe a straightforward way to prove
RR1CS using Σ-protocols in the discrete logarithm setting.

Example Suppose we wish to encode the following polynomial equation in Fq[a, b, c, d]
into an R1CS instance (supposing all variables are secret):

8a3 + 6ab+ c+ 5d = 50.

In order to make this equation amenable to R1CS, we first rearrange it into a system
of equations which are in the form: linear expression × linear expression = linear
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expression. To do this, we add an intermediate variable e to the equation, and rewrite
it as:

a2 = e

2a · (4e+ 3b) = 50− c− 5d

This will yield an R1CS instance with 5 variables and 2 constraints. More precisely, our
R1CS instance-witness pair is (A,B,C, v, q), w where z = (1 v w) = (1, a, b, c, d, e), and
A,B,C are the following matrices:

A =
(

0 1 0 0 0 0
0 2 0 0 0 0

)

B =
(

0 1 0 0 0 0
0 0 3 0 0 4

)

C =
(

0 0 0 0 0 1
50 0 0 −1 −5 0

)

2.3 Isogeny-Based Cryptography

In this section we introduce the necessary background on elliptic curves and isogenies
for cryptographic applications relevant to this thesis. We refer the reader to [Sil86] for
a comprehensive overview of the underlying mathematical background.

2.3.1 Elliptic curves and isogenies

Elliptic Curves An elliptic curve is a non-singular projective curve of genus one. An
elliptic curve E may represented by the general equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where E is said to be defined over a field F if its coefficients a1, . . . a6 are in F. In our
work related to radical isogenies (see [CDV20]), we consider elliptic curves of the form

E : y2 = x3 + ax2 + cx (2.1)

where c ̸= 0 and a2 − 4c ̸= 0.

The j-invariant The j-invariant of an elliptic curve is an element of F given as
output of a function j which takes as input the coefficients of curve defined over a
field F. It is well defined for all curve models and is isomorphism invariant. That is,
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j(E) = j(E′) if and only if E and E′ are isomorphic over F. As an example, given a
curves E represented in the model of Equation (2.1):

j(E) := 256 · (a2 − 3c)3

c2(a2 − 4c) .

The Elliptic Curve Group of Points The F-rational points of a curve E(F) are the
set of affine solutions to the curve equation over F, plus an additional point at infinity.
It is well known that E(F) forms an additive abelian group under a defined addition
law + : E × E → E, with the identity element given by the point at infinity, hence we
refer to this point as 0. The N -torsion of E(F), denoted as E[N ] (or E(F)[N ] more
precisely), is the set of points of order N :

E[N ] = {P ∈ E(F) | [N ]P = 0}.

When gcd(N, char F) = 1, over the algebraic closure, the group E[N ] is isomorphic to
Z/NZ× Z/NZ, and is thus always 2-generated by a basis of points PN , QN .

Isogenies An isogeny is a surjective morphism between elliptic curves of finite kernel,
which acts as a group homomorphism between their group of points over a field. An
isogeny ϕ is separable if it is determined solely by its kernel, denoted kerϕ. The degree
of a separable isogeny is given by its degree as a rational map and the size of its kernel.
An isogeny is cyclic if its kernel is a cyclic group. Given a point P ∈ E of order N , we
may write the codomain of an associated isogeny, with kernel generated by P , as E/⟨P ⟩.
For every isogeny ϕ : E → E′, there exists a unique dual isogeny ϕ̂ : E′ → E such that
ϕ̂ ◦ ϕ = [deg ϕ], where [m] denotes the multiplication-by-m map of a curve. Given there
exists an isogeny ϕ : E → E′ of degree N , we say that E and E′ are N -isogenous, and
that ϕ is an N -isogeny. In this work, we assume all isogenies are separable and cyclic
(unless otherwise stated).

Endomorphism Rings and Supersingular Curves Let E be an elliptic curve over
a field F. Then End(E) is the endomorphism ring of E, i.e., the set of isogenies from E
to itself. Over a finite field Fp2 , the endomorphism ring of elliptic curves either form
(i) an imaginary quadratic field, in which case we say the curve is ordinary, or (ii) a
maximal order O in a quaternion algebra, in which we say the curve is supersingular. In
this work, and in the wider context of cryptographic applications, we are interested in
the latter case. For a curve E defined over a field of characteristic p, E[pr] is trivial for
all r if and only if E is supersingular. Moreover, if E is supersingular then j(E) ∈ Fp2 ,
so we are only typically interested in working over at most the quadratic extension.
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Figure 2.2: The supersingular 2-isogeny graph over F3832 .

The supersingular ℓ-isogeny graph The supersingular ℓ-isogeny graph over Fp2 ,
denoted as Gℓ(p), is a graph constructed by taking the vertices to be the set of
supersingular elliptic curves over Fp2 up to isomorphism (often labelled by their j-
invariant), and the edges to be all ℓ-isogenies between curves. We may view such a
graph as undirected by identifying every isogeny with its dual4. It is a well known
fact that the graph is connected and ℓ + 1-regular for all primes ℓ. First introduced
by Pizer [Piz90], these graphs are Ramanujan, which means that the distribution of
random walks taken on the graph quickly approaches the uniform distribution on the
vertex set. This graph construction is helpful as it allows us to view ℓk-isogenies as
length k walks in Gℓ(p). Given an isogeny ϕ : E0 → Ek of degree ℓk with kernel ⟨G⟩,
we may decompose it into a chain of ℓ-isogenies where:

ϕ = ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1

where ϕi : Ei−1 → Ei for i = 1, . . . , k are ℓ-isogenies where kerϕ1 = ⟨[ℓk−1]G⟩ and
kerϕi+1 = ⟨[ℓk−i−1]ϕi ◦ · · · ◦ ϕ1(G)⟩ for i ≥ 1. The converse also holds, and hence
an isogeny ϕ : E0 → Ek of degree 2k is cyclic if and only if ϕ’s decomposition into
2-isogenies with curves as a walk on the supersingular isogeny graph is non-backtracking
(see [CLG09, Prop. 1]). We define non-backtracking to mean that every outgoing edge
of the walk is never the dual of the in-going edge, i.e. a non-backtracking walk written
as a composition of ℓ-isogenies: ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕk does not have ϕi+1 = ϕ̂i for any i.

Modular Polynomials The modular polynomial Φℓ(X,Y ), is a symmetric polynomial
of degree ℓ+ 1 whose roots over Fp2 correspond to every pair of ℓ-isogenous j-invariants

4The only obstructions to writing the graph as undirected occur at j = 0, 1728.
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of elliptic curves over Fp2 . This allows us to efficiently determine if two elliptic curves
are ℓ-isogenous over a given field. In particular, two j-invariants of elliptic curves j1, j2
are adjacent in Gℓ(p) if and only if Φℓ(j1, j2) = 0 mod p. As an example, for ℓ = 2, we
have the modular polynomial

Φ2(X,Y ) = X3 + Y 3 − 162000(X2 + Y 2) + 1488XY (X + Y )−X2Y 2

+ 8748000000(X + Y ) + 40773375XY − 157464000000000.

Radical Isogenies The work of [CDV20] introduces techniques which allow for a
more efficient way to compute non-backtracking ℓ-isogeny chains for arbitrary ℓ. More
precisely, given an elliptic curve E and a prescribed point P on E of order ℓ, the paper
describes an approach to construct a point P ′ on E′ = E/⟨P ⟩ such that the composition
of isogenies

E → E/⟨P ⟩ → E′/⟨P ′⟩

is a cyclic (or non-backtracking) isogeny of degree ℓ2. This technique can then be
extended in sequence to compute arbitrary length ℓ-power cyclic isogenies. The formulae
take advantage of the structure present in the elliptic curve model, and rely on computing
an ℓ-th root, which also determines the choice of the outgoing ℓ-isogeny at each step.
We include the formulae in the case of ℓ = 2 later in Section 4.2, but refer the reader
to [CDV20] for the general case and more details on how the formulae were derived.

2.3.2 Isogeny-based Cryptography

CGL Hash Function The first isogeny-based cryptographic primitive was the CGL
hash function, introduced by Charles, Goren and Lauter in [CLG09]. The function,
given a public supersingular starting curve E (typically represented by j-invariant) over
Fp2 , takes a non-backtracking walk in the supersingular ℓ-isogeny graph, dictated by
some input k. This can be done by parsing the input string in base ℓ, e.g. k = k0k1 . . . kn
with ki ∈ {0, . . . , ℓ− 1} and ordering the outgoing (non-backtracking) edges from every
vertex Ei in some canonical way, then choosing the path that corresponds to the digit
ki. After n steps, one arrives at the output curve En (again, typically represented by its
j-invariant). The CGL hash function is provably preimage resistant given the hardness
of one of the most general isogeny-based computational assumptions below, which also
underpins the security of many isogeny-based protocols.

Problem 1 (ℓn-isogeny path problem). Given two supersingular elliptic curves E,E′
over Fp2, if it exists, find a cyclic isogeny ϕ : E → E′ of degree deg ϕ = ℓn.

The CGL function is collision resistant provided either the endomorphism ring of
the starting curve is unknown, or the input length is constrained enough to prevent
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E F

E′ F ′

ϕ

ψ ψ′

ϕ′

Figure 2.3: An SIDH square, where ϕ and ϕ′ are N -isogenies, and ψ and ψ′ are N ′-
isogenies, such that kerϕ′ = ψ(kerϕ) and kerψ′ = ϕ(kerψ).

the existence of cycles of length less than twice the input length. A convenient way
of instantiating the CGL hash function is by using the supersingular 2-isogeny graph,
which is 3-regular. Thus, by preventing backtracking, the direction of each step of the
walk is determined by a single bit of the input.

Computing Isogenies in the SIDH Setting Over Fp2 , given that N | p± 1, we
have that the N -torsion group E[N ] ∼= Z/NZ2, and can be generated by a basis of
independent points ⟨PN , QN ⟩. This yields a convenient way of representing isogenies
of degree N by computing their kernels as linear combinations of the basis generators.
Given a kernel G = ⟨[a]PN + [b]QN ⟩ for a, b ∈ ZN , an isogeny ϕ : E → E/G can be
computed using Vélu’s formulas[Vél71] in O(N) time5. The SIDH protocol[JD11] was
a key exchange protocol that exploited the following structure of isogenies: suppose
N,N ′ are coprime integers such that NN ′ | p± 1, and let ψ : E → E′ be an N ′-isogeny.
Then ψ has Fp2-rational kernel and acts as an invertible linear transformation on the
N -torsion group E[N ] (i.e. ψ([a]P + [b]Q) = [a]ψ(P ) + [b]ψ(Q) for P,Q ∈ E[N ]).

Definition 11 (SIDH Square). An SIDH square (see Fig. 2.3) is a tuple:

(p,E, F,E′, F ′, ϕ, ψ, ϕ′, ψ′)

which satisfy the following conditions:

• E,F,E′, F ′ are supersingular elliptic curves over Fp2 .

• ϕ : E → F , ϕ′ : E′ → F ′ are N -isogenies and ψ : E → E′, ψ′ : F → F ′ are
N ′-isogenies such that gcd(N,N ′) = 1 and NN ′|p± 1.

• kerϕ′ = ψ(kerϕ) and kerψ′ = ϕ(kerψ), hence ψ′ ◦ ϕ = ϕ′ ◦ ψ.
5Additionally, one can guarantee that distinct inputs map to distinct isogenies by mapping an input

m ∈ ZN to isogeny with kernel PN + [m]QN , as was the case in SIDH.
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SIDH Key Exchange In the SIDH protocol, two participants interact in a key
exchange where the kernels of their isogenies (corresponding to the horizontal and vertical
isogenies in Figure 2.3 respectively) are kept secret such that kerϕ = ⟨PN + [s]QN ⟩ and
kerψ = ⟨PN ′ + [s′]QN ′⟩. In order to compute the push-through isogenies ϕ′ (resp. ψ′),
each party would also publish the image of the coprime torsion basis, ψ(PN ), ψ(QN )
(resp. ϕ(PN ′), ϕ(QN ′)). The SIDH protocol was rendered broken by attacks [MMP+23,
CD23, Rob23], which exploited the fact that an attacker, who wished to learn the kernel
of the vertical isogeny ψ could use the action of ψ on (PN , QN ) to recover the secret s′.
It is worth noting that protocols which use the SIDH square structure are not necessarily
susceptible to the polynomial time SIDH attack, which do not apply when the protocol
does not leak the action of an isogeny on a coprime torsion basis, which is the case in a
number of follow up works [FMP23, Bas24a, Bas24b, BMP23].

Works on proving knowledge of isogenies [JD11, DDGZ22, GPS17, BCC+23] exploit
the structure of SIDH-squares in order to construct sigma-protocols serving as zero-
knowledge proofs of knowledge. These can be compiled via the Fiat-Shamir transform
to obtain a number of cryptographic protocols, such as digital signatures [GPS17],
Oblivious Pseudorandom Functions (OPRFs) [Bas24b, BKW20] and Verifiable Delay
Functions (VDFs) [DMPS19]. Of relevance to our work, is the the proof of knowledge
of an isogeny presented in [DDGZ22], which relies on the introduction of a decisional
assumption. In particular, this assumption does not leak torsion information, and is
therefore not susceptible to the SIDH attacks from [MMP+23, CD23, Rob23].

Problem 2 (Decisional Supersingular Product (DSSP) Problem). Given an isogeny
ϕ : E → F of degree ℓn1

1 , construct a PPT distinguisher A with non-negligible advantage
for the following two distributions:

• D0 = {(E′, F ′, ϕ′)} such that ϕ′ : E′ → F ′ is a ℓn1
1 isogeny, and there exists a

isogeny ψ : E → E′ of degree ℓn2
2 such that kerϕ′ = ψ(kerϕ). The distribution is

taken over the uniform sampling of ψ.

• D1 = {(E′, F ′, ϕ′)} such that ϕ′ : E′ → F ′ is a ℓn1
1 isogeny, and E′ has the same

order as E. The distribution is taken over the uniform sampling of the curve E′,
and isogeny ϕ′.

We say that isogenies ϕ, ϕ′ are parallel if they can exist as parallel sides of an SIDH
square. In particular, when there exists coprime degree isogenies ψ : E → E′, ψ′ : F →
F ′ such that the conditions of Definition 11 are satisfied; namely that kerϕ′ = ψ(kerϕ)
and kerψ′ = ϕ(kerψ). Problem 2 asks a distinguisher which is given two isogenies to
determine if they are parallel.

Let µN = {x ∈ F : xN = 1} be the set of N -th roots of unity. The Weil pairing
eN : E[N ]×E[N ]→ µN is an alternating, bi-linear map on the points of order N of an
elliptic curve over F. We also have the following.
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Proposition 1 ([Sil86, Prop. III.8.2]). Let N,N ′ be coprime integers and ϕ : E → E′

be an N ′-isogeny over F. Then for all P,Q ∈ E[N ], it holds that eN (ϕ(P ), ϕ(Q)) =
eN (P,Q)N ′.



Chapter 3

Proving Arithmetic Statements
on Pedersen Commitments

We begin the novel contributions of the thesis with a “warm-up” chapter, which collects
and proves some folklore results around proving general arithmetic statements on
commitments using Σ-protocols.

The work in this chapter relies on Pedersen commitments (see their definition
in Section 2.1.1), which renders all techniques secure strictly only in the classical model
(in the absence of quantum computational attacks), but the results trivially generalise
to any perfectly hiding, computationally binding, additively homomorphic commitment
schemes. Many classical proof of knowledge constructions rely on Σ-protocols proving
arithmetic relations between different Pedersen Commitments. The area was largely
pioneered by Schnorr [Sch91], Chaum-Pedersen [CP93], Fujisaki-Okamoto [FO97] and
Camenisch et. al. [CM99, CS97] In this section, we mostly introduce the proofs
of [WTs+18, App. A] due to their efficiency, and prove security of a folklore construction
in Fig. 3.4. We also introduce an approach to proving R1CS statements using Pedersen
commitments in Section 3.5, using only the proofs we introduce in this section.

Statement of Authorship Contribution (Chapter 3) The following section is
adapted from my contributions to [CLR24], which collects various results from other
works on proofs of Pedersen commitments – namely [Sch91, WTs+18]. All of the content
included in this chapter which was not in my own words has either been rewritten or
expanded upon, and I am solely responsible for the intellectual contributions of the
content present in this chapter.
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3.1 Proving Knowledge of an Opening to a Commitment

Given commitment C to a message x with randomness r, A prover may convince a
verifier that they know a valid opening to the commitment by engaging in the protocol
described in Fig. 3.1.

P (C, x, r; pp) V (C; pp)

1 : α1, α2 ←$ Z×
q

2 : t← gα1hα2

t

c←$ Z×
q : 1

c

3 : s1 ← xc+ α1

4 : s2 ← rc+ α2
s1, s2

return gs1 · hs2 ?= Cc · t

Figure 3.1: Sigma protocol for proving knowledge of an opening of a Pedersen commit-
ment. We denote a parallel composition of this proof by calling OpenProof with the
prover’s input.

Theorem 3. Fig. 3.1 is a Σ-protocol for the relation:

R = {((C, g, h, q), (x, r)) | C = gxhr}.

Proof. Follows from [Sch91].

3.2 Proving Commitments Open to the Same Message

Given commitments (C1, C2) to the same message x under different randomness C1 =
Commit(x, r1) and C2 = Commit(x, r2), a prover may engage in Figure 3.2. Observe
that if C1 and C2 do not open to the same message, there is still a satisfying witness to
the relation in Theorem 4. Taking advantage of it, however, requires knowledge of a
discrete logarithm of C1C

−1
2 to the base h.

Theorem 4 (Folklore). Fig. 3.2 is a Σ-protocol for the relation:

R = {((C1, C2, g, h, q), (z)) | C1C
−1
2 = hz}.
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P (C1, C2, x, r1, r2; pp) V (C1, C2; pp)

1 : α←$ Z×
q

2 : t← hα

t

c←$ Z×
q : 1

c

3 : s← c(r1 − r2) + α
s

return hs ?= t · (C1 · C−1
2 )c

Figure 3.2: Sigma protocol for proving Pedersen commitments open to the same value.

3.3 Proving Multiplicative Relations between Commit-
ments

Given C1 = Commit(x) = gxhr1 , C2 = Commit(y) = gyhr2 , C3 = Commit(z) = gzhr3 , A
prover may engage in Fig. 3.3 to convince a verifier that z = xy.

Theorem 5. Fig. 3.3 is a Σ-protocol for the relation:

R = {((C1, C2, C3, g, h, q), (x, y, r1, r2, r3)) | C1 = gxhr1 , C2 = gxhr2 , C3 = gxyhr3}.

Proof. Follows from [WTs+18, Thm. 10].
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P (C1, C2, C3, x, y, r1, r2, r3; pp) V (C1, C2, C3; pp)

1 : α1, . . . , α5 ←$ Z×
q

2 : t1 ← gα1hα2

3 : t2 ← gα3hα4

4 : t3 ← Cα3
1 hα5

t1, t2, t3

c←$ Z×
q : 1

c

5 : s1 ← α1 + cx

6 : s2 ← α2 + cr1

7 : s3 ← α3 + cy

8 : s4 ← α4 + cr2

9 : s5 ← α5 + c(r3 − r1y)
s1, s2, s3, s4, s5

b1 ← gs1hs2 ?= t1 · Cc
1 : 2

b2 ← gs3hs4 ?= t2 · Cc
2 : 3

b3 ← Cs3
1 hs5 ?= t3 · Cc

3 : 4

return b1 ∧ b2 ∧ b3

Figure 3.3: Sigma protocol for proving multiplicative relationships between Pedersen
commitments. We denote a parallel composition of this proof by calling MulProof with
the prover’s input.

3.4 Proving a Commitment Opens to a Non-Zero Value

Given a commitment C = Commit(x) = gxhr, a prover may engage in Fig. 3.4 to
convince a verifier that x ̸= 0.

Theorem 6. Fig. 3.4 is a Σ-protocol for the relation:

R = {
(
C, (x, r)

)
| C = Commit(x, r), x ̸= 0}.

Proof. Completeness. Observe that x ̸= 0 =⇒ t1 ̸= 1 and the other verification
equations hold. Hence, V accepts an honest P with probability 1.

Special Soundness. Suppose (comm, chall, resp), (comm′, chall′, resp′) are two ac-
cepting transcripts where comm = comm′, and chall ̸= chall′. Denote resp, resp′ as
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P (C, x, r; pp) V (C; pp)

1 : α1, . . . , α4 ←$ Z×
q

2 : t1 ← gα1x

3 : t2 ← Cα2hα3

4 : t3 ← gα4

t1, t2, t3

c←$ Z×
q : 1

c

5 : s1 ← α2 + cα1

6 : s2 ← α3 − cα1r

7 : s3 ← α4 + cα1x
s1, s2, s3

b1 ← ¬(t1
?= 1) : 2

b2 ← tc1t3
?= gs3 : 3

b3 ← tc1t2
?= Cs1hs2 : 4

return b1 ∧ b2 ∧ b3

Figure 3.4: Sigma protocol for proving a Pedersen commitment opens to a non-zero
value. We denote a parallel composition of this proof by calling NonZeroProof with the
prover’s input.

(s1, s2, s3) and (s′1, s′2, s′3), respectively. We define the output of an extractor to be
(α′1, x′, r′) where:

α′1 = s1 − s′1
c− c′

x′ = α′−1
1

s3 − s′3
c− c′

r′ = α′−1
1

s′2 − s2
c− c′

We argue x′, r′ is a valid witness to the relation in Theorem 6. First, given the
following equations:

tc1t3 = gs3 and tc
′

1 t3 = gs
′
3

we divide the first by the latter, obtaining

tc−c
′

1 = gs3−s′
3

=⇒ t1 = g(s3−s′
3)/(c−c′) (3.1)

which implies that the discrete logarithm of t1 is (s3 − s′3)/(c− c′). Second, we consider
the equations:

tc1t2 = Cs1hs2 and tc
′

1 t2 = Cs
′
1hs

′
2 .
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By dividing the two equations, we obtain

tc−c
′

1 = Cs1−s′
1hs2−s′

2

=⇒ t1 = Cα
′
1h(s2−s′

2)/(c−c′). (3.2)

By Eqs. (3.1) and (3.2), first we prove that α′1 ̸= 0 (i.e. s1, s′1 are distinct). If α′1 = 0,
then

g(s3−s′
3)/(c−c′) = h(s2−s′

2)/(c−c′)

Hence, either the discrete logarithm relation between g and h may be recovered, or
both s2 = s′2 and s3 = s′3. The former case contradicts the hardness assumption, and
the latter case implies that t1 = 1, which contradicts the first verification equation.
Therefore, it must be the case that α′1 ̸= 0, and we have the following:

Cα
′
1h(s2−s′

2)/(c−c′) = g(s3−s′
3)/(c−c′)

=⇒ Cα
′
1 = g(s3−s′

3)/(c−c′)h(s′
2−s2)/(c−c′)

=⇒ C = gα
′−1
1 (s3−s′

3)/(c−c′)hα
′−1
1 (s′

2−s2)/(c−c′)

=⇒ C = gx
′
hr

′
.

Last, we show that if x′ = 0, the first verification equation cannot be satisfied. Observe
that

t1 = g(s3−s′
3)/(c−c′) = gα

′
1x

′ = g0 = 1

Hence, the extractor’s output is valid.

Honest Verifier Zero-Knowledge. On input chall, for a a given commitment C,
the simulator S does the following:

1. Samples uniformly random values s1, s2, s3, α←$ [q − 1], then computes:

t1 = gα t2 = Cs1hs2

tc1
t3 = gs3

tc1
.

2. Outputs the transcript ((t1, t2, t3), c, (s1, s2, s3)).

By the choice of t1, t2, t3, the transcript satisfies the verification equations above.
We show that over uniformly distributed challenges, S outputs transcripts which are
identically distributed with transcripts between an honest P and V . Fix an instance C
and challenge c. Observe that a real protocol execution is determined by P ’s random
coins α1, . . . , α4, while, on the other hand, a simulated transcript is uniquely determined
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by S’s random coins s1, s2, s3, α. Since both are sampled from the same probability
space, and uniquely determine the resulting transcripts, we show that there exists
bijection from the random coins of an honest P to the random coins of S that yields
identical transcripts for a fixed instance challenge pair. Consider the bijection:

(α1, α2, α3, α4) 7→ (α2 + cα1, α3 − cα1r, α4 + cα1x, α1x)

By inspection, this map is both injective and surjective when x ≠ 0 (and, hence, bijective),
and when S picks random coins (α2 + cα1, α3 − cα1r, α4 + cα1x, α1x), it produces a
transcript identical to that of an honest P who uses random coins (α1, α2, α3, α4). Both
of these events occur with equal probability. Therefore, over every possible instance,
the simulator produces transcripts identical to that of honest protocol executions.

3.5 Proving Generic Statements using Sigma protocols for
Pedersen Commitments

We briefly describe an approach to construct a proof system for R1CS over Fq ∼= Zq
using only Pedersen commitments over a group of order q1, along with Figs. 3.1 and 3.3.
There are several other works which introduce general frameworks for proving statements
on Pedersen commitments [NBMV99, CM99, AGM18, Bra97]. While this construction
could be considered folklore, it is not widely discussed in the context of R1CS, since
in most cases the use of succinct proof systems is more efficient. For example, one
could employ Bulletproofs [BBB+18], which are particularly efficient and operate in
the discrete logarithm setting. However, for small arithmetic circuits, and in a classical
setting, this approach may be useful. Recall that

RR1CS = {(A,B,C,x, q), (w) | Az ◦Bz = Cz, z = (1 v w)}

for matrices A,B,C ∈ Zm×n+1
q , and vector z = (1 v w) ∈ Zn+1

q . Equivalently, we can
represent the R1CS as the following system of m equations in n variables. For j in [m]:∑

i∈[n]
Ai,jzi,

 ◦
∑
i∈[n]

Bi,jzi

 =
∑
i∈[n]

Ci,jzi. (3.3)

In order to prove knowledge of a satisfying assignment z, we can use the following
approach:

1. The prover commits to the values z using Pedersen commitments2, such that
(Pi = Commitq(zi))i∈[n], and sends the commitments to the verifier.

1We note that this requires q to be of sufficient size to guarantee the hardness of computing discrete
logarithms in the group of order q

2for efficiency sake, they could simply set the commitments to the public values as gzi
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2. Observe that the verifier can compute linear combinations of committed values,
since the commitments are additively homomorphic. The verifier computes the
corresponding commitments to the linear combinations:

Lj =
∏
i∈[n]

P
Ai,j

i , Rj =
∏
i∈[n]

P
Bi,j

i , Oj =
∏
i∈[n]

P
Ci,j

i for j ∈ [m],

where taking the product corresponds to the group operation on the commitments.

3. Let ri be the associated randomness for the i-th commitment Pi. The prover
computes the following linear combinations, for j ∈ [m]:

α1,j =
∑
i∈[n]

Ai,jzi, α2,j =
∑
i∈[n]

Bi,jzi,

β1,j =
∑
i∈[n]

Ai,jri, β2,j =
∑
i∈[n]

Bi,jri, β3,j =
∑
i∈[n]

Ci,jri.

4. The prover engages in the following sigma protocols in parallel (with the same
challenge c←$ Zq):

MulProof(Lj , Rj , Oj , α1,j , α2,j , β1,j , β2,j , β3,j) for j ∈ [m],
OpeningProof(Pi, zi, ri) for i ∈ [n].

Note that the multiplication proofs prove precisely that the equations in Eq. (3.3)
hold, and the opening proofs are needed in order to extract the witness. We note
that if the R1CS instance has n variables and m constraints, the proof contains (3m+
2n) commitments and (5m + n) Zq-elements. The prover performs (6m + 3n) group
exponentiations, while the verifier performs (9m+ 2n+O(mn)) group exponentiations3,
(6m+2n) group operations and n inversions. By applying the Fiat-Shamir transform, the
protocol can be made non-interactive. Depending on your requirements, for small R1CS
instances this can be quite reasonable. For example, if m = n = 50, assuming log q = 256
and commitments are made with 257-bit compressed elliptic curve representations, the
proof size is approximately 17 kB.

3We remark that the bi-variate term O(mn) is 3mn in the worst case if the matrices have all non-zero
entries, but is often negligible in practice since the matrices A, B, C are generally sparse (and often also
have small entries).



Chapter 4

Proving Isogeny Relations with
Generic Statements

While attacks have rendered the SIDH assumption broken [MMP+23, CD23, Rob23],
the more general ℓ-isogeny path finding problem remains secure, and underpins the
security of most isogeny-based cryptographic schemes. In this section, we present a
method to prove the knowledge of several isogeny relations which are useful in the
context of constructing isogeny-based protocols. We first construct R1CS instances
in Section 4.1 which encode knowledge of a path in the supersingular 2-isogeny graph
using modular polynomials. In particular, we aim to construct a proof of knowledge the
following relation, which is based on the hardness of the ℓ-isogeny path finding problem:

Rℓk-IsoPath = {((E0, E1), ϕ) : ϕ : E0 → E1 is an isogeny, deg ϕ = ℓk, k ∈ Z} (4.1)

We then show that radical isogeny formulae can encode isogeny paths more efficiently
in Section 4.2. Using standard techniques, we can encode the arithmetic over Fp2 in Fp
with minimal overhead in Section 4.3.

Lastly we introduce a variant of the CGL hash function, and show to prove knowledge
of a preimage, as well as proving consistency of parallel evaluations of the function
in Sections 4.4 and 4.5. This is useful in the context of our construction presented
in Section 5.3.

We summarise the results of applying different techniques to construct R1CS systems
for different isogeny relations from this section in Table 4.1.

High-Level Overview The reader might wonder, what in particular makes generic
proof systems for arithmetic circuits so amenable to isogenies? Firstly, previous PoKs
for Relation 4.1 based on sigma protocols [JD11, DDGZ22, GPS17, BCC+23] suffer
from various deficiencies. They require computing large degree coprime N ′-isogenies,
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Relation 4.1 Relation 4.10 Relation 4.19
n m n m n m

ModPoly-R1CS Fp 11k + 7 11k + 5 ? ? ? ?
Fp2 4k + 3 4k − 2 ? ? ? ?

Radical R1CS Fp 5k + 4 5k 12k + 4 13k 23k + 8 25k
Fp2 2k + 2 2k ?∗ ?∗ ?∗ ?∗

Table 4.1: Comparison of R1CS systems for different isogeny relations over Fp and Fp2

for ℓ = 2. k is the length of the isogeny path, and n and m denote the number of
constraints and variables respectively of the R1CS instance over the respective field. ‘?’
denotes that the R1CS system was not implemented (but may be possible). ∗We are
not aware of a technique to efficiently canonicalise choice of square root over Fp2 .

which means they must either work over larger field extensions or choose a prime large
enough to have Fp2-rational N ′-torsion. They extremely inefficient due to their small
challenge space, resulting in many parallel repetitions to achieve negligible soundness
error. Thirdly, the special soundness extractors of these protocols for Relation 4.1
typically recover a degree N ′2ℓk isogeny, rather than an isogeny of degree ℓk. Hence,
we try a different approach. Fortunately, deciding knowledge of an isogeny path can
be represented in a very low depth, regular circuit. That is, an arithmetic circuit C
where C(x,w) = 1 if and only if (x,w) ∈ Rℓk-IsoPath. In this case, C may simply be
a sequence of parallel evaluations of the modular polynomial on each pair of adjacent
j-invariants. This allows us encode the relation in a highly compact (but equivalent)
intermediate representation, to be fed into the proof system.

The general roadmap to utilising generic proof systems is as follows:

1. Encode the relation R and pair (x,w) into an equivalent R1CS, denoted by R′
and (x′, w′) respectively.

2. Use a generic zk-SNARK for R1CS (resp. arithmetic circuits) to argue the
knowledge of a witness w′ such that (x′, w′) ∈ R′.

3. The prover’s knowledge of w′ will imply the knowledge of w such that (x,w) ∈ R.

Statement of Authorship Contribution (Chapter 4) The following section is
based on the joint works [CLL23, LP24], and some content is also present in the PhD
thesis of Lai. All of the content included in this chapter which was not in my own
words has either been rewritten or expanded upon, and I am responsible for the majority
of the intellectual contributions of the content present in this chapter. The notable
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sections of this chapter, of which the coauthors of the prior works were more involved
in the intellectual contributions, are: (1) Section 4.3, which was originally written by
Lai and conceived along with myself, and was included in Lai’s PhD thesis, but has
been generalised to handle more arbitrary constraints for this work by the author; and
(2) Sections 4.2 and 4.4, of which Pedersen introduced the idea of investigating radical
isogenies and supported theoretical discussion. I would like to emphasise that the chapter
consists of a collection of results and techniques which are common to these two papers,
instigated primarily by myself.

4.1 R1CS for Isogeny Paths from Modular Polynomials

In this section we provide an approach to proving Relation 4.1 via representing knowledge
of an isogeny path as knowing the solutions to a system of coupled modular polynomials,
an approach first introduced by the verifiable delay function of [CSRT22]. For prime-
power degree isogenies, the witness ϕ is typically represented by fixing a basis of the
ℓk-torsion group, and giving a kernel generator, a point on E0 of order ℓk. Instead,
we choose to represent our witness isogeny ϕ in the relation above by a sequence
of j-invariants, encoding a path in the supersingular ℓ-isogeny graph. Recall, two
elliptic curves E,E′ are ℓ-isogenous if and only if Φℓ(j(E), j(E′)) = 0. Then an isogeny
ϕ : E0 → E1 of degree ℓk can equivalently be represented as a sequence of intermediate
j-invariants j1, j2, ..., jk−1 such that

Φℓ(j(E0), j1) = 0
Φℓ(ji, ji+1) = 0 for all i ∈ {1, ..., k − 2}

Φℓ(jk−1, j(E1)) = 0

We note that the equations do not impose any restrictions on the underlying finite
field. Hence, our method can apply to the CSIDH setting where ji are defined over the
prime field as long as the proof system supports the form of the prime. Our method
can complement the efficient proof systems [DG19, BKV19] which have no restrictions
on the degree of the witness.

In order to apply our proof systems, we transform the modular polynomial relation
into an R1CS with n variables and m constraints. Concretely, we consider an R1CS
consisting of the statement A,B,C ∈ Fm×(n+1)

p2 and a witness z ∈ Fn+1
p2 such that

Az ◦Bz = Cz.

In this formulation, A,B,C are public matrices which correspond to an instantiation
of the language dependent on p, ℓ, k. The vector z consists of 1, the auxiliary input -
j-invariants of the starting and ending curve - and the secret input - the j-invariant
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sequence (as well as intermediate variables dependent on the inputs). Each row of
A,B,C will encode a quadratic constraint on the variables. One of these rows must
encode the modular polynomial of level ℓ, Φℓ(ji, ji+1) = 0, which shows that two adjacent
j-invariants are isogenous. First, we note that

Φ2(X,Y ) = X3 + Y 3 − 162000(X2 + Y 2)−X2Y 2 + 40773375XY
+ 1488XY (X + Y ) + 8748000000(X + Y )− 157464000000000 (4.2)

For representation compactness, we arrange the statement Φ2(X,Y ) = 0 in the following
form:

− 1488XY (X + Y − 1488−1XY ) = X3 + Y 3 − 162000(X2 + Y 2)+
8748000000(X + Y ) + 40773375XY − 157464000000000 (4.3)

R1CS over Fp2 We encode matrices A,B,C such that a row evaluates the equation
above and performs intermediate variable consistency checks. Note that we can do
far better than the naive approach, where each row of the matrices correspond to a
single multiplication or addition of variables in z, and the entries of z contain every
intermediate variable obtained.

Suppose the isogeny path in question is of length k. If k = 1, ℓ = 2 then by Eq. (4.3),
we obtain:

z = ( 1 j0 j1 j2
0 j2

1 j3
0 j3

1 j0j1 )T

with the matrices:

A =

 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1

, B =

 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 c4 c4 0 0 0 0 −1

, C =

 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
c0 c1 c1 c2 c2 1 1 c3


where

c0 = −157464000000000 c1 = 8748000000 c2 = −162000
c3 = 40773375 c4 = 1488,

where the ci’s are derived from Eq. (4.3). The first 5 rows provide consistency checks
on each variable, including square, cube, and multiplication. The last row checks the
evaluation of the polynomial Eq. (4.3). Now we can extend this to a path of length
k > 1, for each j-invariant ji, we will introduce an additional 4 variables (including
input): ji, j2

i , j3
i , ji−1ji. We note that the squarings and cubings for each j-invariant

need only be checked once. Hence, we obtain n := 4k + 3 variables.
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For each secret j-invariant in the sequence1 there will be 2 constraints for squaring
and cubing consistency checks. For each adjacent pair ji−1, ji, there will be 2 constraints:
one checking consistency of the variable ji−1ji, and one the evaluation of the modular
polynomial. This gives us m := 4k − 2 constraints.

Adding Requirement for Non-Backtracking We first note that a non-backtracking
isogeny path corresponds directly to a cyclic isogeny (see Section 2.3.1). Hence we show
how to prove Rℓk-CyclicIsoPath (the same as Relation 4.1 with the added requirement
that the witness is a cyclic isogeny). In the modular polynomial relation we introduce,
we do not provide any guarantee that our isogeny is non-backtracking (and hence cyclic).
However, with minor overhead, it is possible to add this requirement. Observe that,
given an isogeny walk from E0 to Ek of length k, with a j-invariant sequence j0, ..., jk,
a backtracking walk implies that there exists an i ∈ {1, ..., k − 1} such that ji−1 = ji+1.
So it suffices to show that

δi = ji−1 − ji+1 ̸= 0 for all i ∈ {1, ..., k − 1}.

One can realise an inequality in an arithmetic circuit with the following process: given
two numbers a, b, we may show that they are distinct if and only if there exists an
inverse of (a− b) over the field. In other words, there exists c such that (a− b) · c = 1.
The inverse c := (a− b)−1 can be precomputed by the prover and given as a part of the
input.

We can perform an additional optimisation step to minimise the number of precom-
puted inverses for the prover, the calculation of which is expensive. Indeed, the prover
can accumulate the product of the difference terms δi, and check that the product is
nonzero. In particular, our resulting conditions to prevent backtracking are that:

1. Compute δ = ∏
δi = ∏k−1

i=1 (ji−1 − ji+1).

2. Input δ′ such that δδ′ = 1,

where the δ term will be non-zero if and only if all δi are non-zero, which is true if (but
not only if) the walk is non-backtracking (see Remark 1).

It is straightforward to add these constraints to our previous R1CS instance. In the
Fp2 setting, this would add an additional k− 1 constraints and variables for the product
check; and one constraint and variable (the inverse given as input) for the inverse check.
This version yields 5k + 3 variables and 5k + 2 constraints.
Remark 1. We note that this check will also prevent the use a 2-cycle (with two distinct
edges, corresponding to a norm 4 endomorphism), which is still a cyclic isogeny. So

1The verifier can compute the squarings and cubings of j0 and jk offline and input them directly,
hence the checks are not required.
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while technically the R1CS fails to prove cyclic isogenies which contain a 2-cycle, we
stress these exceptional cases are extremely rare. In particular, there are at most 5 pairs
of double edges in the G2(p) [ACNL+21, Cor. 2.15] out of approximately p

8 edges (by
the handshaking lemma). However, depending on the application, a cyclic ℓk-isogeny
containing a 2-cycle may be translated into a cyclic ℓk−2-isogeny, which may still be
acceptable; and another approach is to work over a prime p = 1 mod 420, which does
not possess 2-cycles [CLG09]. Nevertheless, this issue is completely circumvented by
the techniques introduced in the next section. This is another advantage of the radical
isogeny formulae, which by design only produces cyclic isogenies, and hence does not
require this check.

4.2 R1CS for Isogeny Paths from Radical Isogeny Formu-
lae

In this section, we develop a more efficient R1CS description which encodes knowledge
of a 2k-isogeny for any k as in Section 4.1, but rather than using modular polynomials,
we apply the radical isogeny formulas from [CDV20]. Due to the requirements of the
radical isogeny formulae, we now restrict ourselves to the setting of computing isogenies
over Fp2 , p ≡ 3 (mod 4) (which is standard for isogeny-based cryptography), and curves
represented via the equation

y2 = x3 +Ax2 + Cx, (4.4)

where A,C ∈ Fp2 . Results from the prior section do not have this restriction, but
we stress that the R1CS can also be modified to input public j-invariants j0, jk as a
representation for the starting and end curve. See Remark 2.

Radical Isogeny Walks. Rather than using the 2-modular polynomial, we encode
knowledge of an isogeny path by using the radical isogeny formulas from [CDV20] (we
note that the formula for ℓ = 2 was already been proposed in [CD20]). In their work,
the authors introduce a faster way to compute 2-isogenies, which removes the need
to generate the 2-torsion in the first place, thus speeding up the computation. The
dominant part of the isogeny computation then becomes taking a square-root. An
isogeny of degree 2 connecting two curves Ei and Ei+1 can then be expressed as

Ei : y2 = x3 +Aix
2 + Cix −→ Ei+1 : y2 = x3 +Ai+1x

2 + Ci+1x ,

where the coefficients are connected via the following simple formulas

Ai+1 = 6
√
Ci +Ai , Ci+1 = 4

√
CiAi + 8Ci . (4.5)



40CHAPTER 4. PROVING ISOGENY RELATIONS WITH GENERIC STATEMENTS

By substituting the first equation into the second, and adding a squaring constraint,
we can encode knowledge of an isogeny path of length k in the 2-isogeny graph (i.e. an
instance of Relation 4.1) in an R1CS instance which has the constraints:

6Ci+1 − 48Ci = 4Ai(Ai+1 −Ai) (4.6)
36 · Ci = (Ai+1 −Ai)2 (4.7)

for i = 0, . . . , k − 1. Previously, the constraints required cubic terms in the j-invariants
of elliptic curves, and now the equations are solely quadratic. This yields an R1CS
instance with 2k + 2 variables (Ai, Ci for i = 0, . . . , k) and 2k constraints (see above),
rather than the 4k + 3 variables and 4k − 2 constraints from the modular polynomial
approach. We note that the radical isogeny formulas are by design non-backtracking, so
we do not need to take extra care to ensure the isogenies are cyclic. More precisely, this
R1CS instance is a proof of knowledge for the relation Rℓk-CyclicIsoPath.
Remark 2. Suppose one wishes to prove Relation 4.1 where the public input is represented
by two j-invariants j0 and jk, and witness is a path of k j-invariants:

j0, j1, . . . , jk−1, jk.

We show how to modify the radical R1CS construction to accommodate this. First, the
prover needs to perform some precomputation. First, they choose a suitable model for
E0 : y2 = x3 +A0x2 + C0x such that j(E0) = j0 and such that the outgoing two curves
computable by radical isogeny formulae includes a curve of j-invariant j1. At each of the
i ∈ [k] steps, the prover can then determine which of the possible outgoing curves Ei+1
(corresponding to the choice of

√
Ci in Equation (4.5)) has j(Ei+1) = ji+1, and then

use the sequence of curve coefficients {Ai, Ci}i∈[k+1] as secret input to the R1CS. The
verifier still needs to be convinced that the j0 = j(E0) and jk = j(Ek) match the public
input. While the prover can simply publish the curve coefficients A0, C0 and Ak, Ck,
which the verifier can then check offline, it may be the case that the curve equations
leak some information about the secret path. Hence, the prover may wish to assert the
correctness of the j-invariants j0, jk within the R1CS instance. Using the fact that for
this model of curve

j(Ei) := 256 · (A2
i − 3Ci)3

C2
i (A2

i − 4Ci)
,

one can add the following extra constraints to the R1CS for i ∈ {0, k}:

A2
i = γi, C2

i = δi, (to verify the squarings)
(γ2
i − 3Ci)2 = ϵi, ϵi(γ2

i − 3Ci) = ηi, (for the numerator)
δi(γi − 4Ci) = ζi, ji · ζi = 256 · ηi (for the denominator and final check)

This requires only an additional 12 constraints and 12 variables, which is negligible
overhead for cryptographic sized k ≥ 2λ.
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4.3 Transforming Fp2 R1CS instances into Fp
In Sections 4.1 and 4.2, we construct R1CS instances for verifying isogeny paths over
the full supersingular isogeny graph (which operates over Fp2). However, it may be
desirable, and in some cases necessary (such as in the following section), to embed the
R1CS instance into the base field Fp. Since p ≡ 3 mod 4, we may interpret Fp2 as Fp[j]
for j2 = −1. We show how to convert an Fp[j] R1CS instance into an Fp R1CS instance
below:

Input. We encode each non-trivial entry zi in the vector z := (1||v||w) as a pair of
elements xi, yi ∈ Fp where zi’s are naturally interpreted as xi + yij. We will refer to
Re(zi) = xi as the real part and Im(zi) = yi as the imaginary part. The first entry of z
is always 1 and does not need an additional variable.

Squaring. Each Fp[j] squaring z2
a = zb (indexed by a, b), can be encoded using only 2

Fp constraints:

2Re(za)Im(za) = Im(zb) (for the imaginary part)
(Re(za) + Im(za)) · (Re(za)− Im(za)) = Re(zb) (for the real part)

It is easy to observe that the above equations hold if and only if z2
a = zb in Fp[j].

Multiplication. For each Fp[j] multiplication zazb = zc, (indexed by a, b, c) we encode
the following 3 Fp constraints (requiring 1 additional variable ua,b,c):

Im(za)Im(zb) = ua,b,c (introducing a variable)
Re(za)Re(zb) = Re(zc) + ua,b,c (for the real part)

(Re(za) + Im(za)) · (Re(zb) + Im(zb)) = Im(zc) + Re(zc) + 2ua,b,c (for the imaginary part)

Expressing Arbitrary R1CS Constraints. We note that expressing any R1CS
constraint, which corresponds to an equation with a product of linear expressions on
the left and a linear expression on the right, can be done in the same manner as
multiplication, provided that the coefficients of the linear expressions are solely in Fp.
Observe that the embedding is Fp-linear, i.e. caRe(za) + cbRe(zb) = Re(caza + cbzb) and
caIm(za) + cbIm(zb) = Im(caza + cbzb) for all ca, cb ∈ Fp. Hence, an arbitrary constraint
in n variables over Fp[j]:

(
n∑
l=1

clzl) · (
n∑
r=1

drzr) =
n∑
o=1

eozo,
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where ci, di, ei ∈ Fp and zi ∈ Fp[j] for all i ∈ [n], can be encoded using only 3 constraints
and 1 additional variable2 in Fp:

n∑
l=1

clIm(zl) ·
n∑
r=1

drIm(zr) = u(
n∑
l=1

clRe(zl)
)
·
(

n∑
r=1

drRe(zr)
)

=
n∑
o=1

eoRe(zo) + u(
n∑
l=1

clRe(zl) + clIm(zl)
)
·
(

n∑
r=1

drRe(zr) + drIm(zr)
)

=
(

n∑
o=1

eoIm(zo) + eoRe(zo)
)

+ 2u

If the R1CS instance over Fp[j] has

v variables, s squaring constraints and g general constraints,

then the resulting R1CS instance over Fp will have:

2v + g variables and 2s+ 3g constraints.

Modular Polynomial R1CS over Fp. Since the modular polynomial R1CS natively
has 4k + 3 variables and 4k − 2 constraints (k − 1 of which are squarings), the resulting
R1CS instance over Fp will have 11k + 7 variables and 11k − 5 constraints. Adding
non-backtracking checks would result in overall 14k+7 variables and 14k−5 constraints.

Radical Isogeny R1CS over Fp. Since the radical isogeny R1CS natively has 2k+ 2
variables and 2k constraints (k of which are squarings), the resulting R1CS instance
over Fp will have 5k + 4 variables and 5k constraints.

4.4 Proving Knowledge of a CGL Preimage

In the 2-isogeny graph, every vertex has three outgoing isogenies, so at every step except
the first, without backtracking, we have exactly two options to continue our path. In
the original CGL construction, the 2-torsion is ordered in some deterministic fashion
(where the backtracking edge is disregarded) and the input m, read as bits, determines
whether to go “left” (mi = 0) or “right” (mi = 1) at every bifurcation.

In this section, we show how to construct an R1CS instance which asserts knowledge
of a 2-isogeny walk predetermined by a directional bit-string. Essentially, on public

2As a slight abuse of notation, we avoid indexing the variable u here, but it should be unique for
each constraint to be embedded into Fp.
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input tuple of supersingular curves (E0, Em), we prove knowledge of a secret input
m ∈ {0, 1}n such that

Em = CGL(E0,m).
We extend the latter to allow the proof that two different paths have been computed
using the same string as an input.

We start this section with a construction for a radical isogeny version of CGL, which
is interesting in its own right. We then move on to building a proof system of correct
CGL evaluation, and finally simplify/extend this to the above-mentioned proofs.

Clearly, there are two choices for
√
Ci. In fact, in the 2-isogeny graph, this choice

corresponds to going left or right in a non-backtracking walk, in a similar way as CGL
does. There are many ways to distinguish these two roots, but since we plan to later
distinguish them algebraically as part of our R1CS constraints, we use the following
method.

Let ±αi be the square roots of Ci. By working over p ≡ 3 (mod 4), we can distinguish
±αi via the residuosity of their real (or imaginary) part. Recall that −1 is a non-residue
in Fp for p (mod 4); and since Re(αi) ∈ Fp, we find that, if Re(αi) ̸= 0, precisely one
of Re(αi) and Re(−αi) are quadratic residues and non-quadratic residues respectively.
In the case that Re(αi) = 0, since by construction Ci ̸= 0, we have Im(αi) ̸= 0. In
this case, we can distinguish the two roots by looking at the second coefficient, since
Im(±αi) = ±Im(αi).

From here, if Re(±
√
Ci) ̸= 0, we define αi as the square root of Ci for which Re(αi)

is itself a square. If Re(±
√
Ci) = 0, we simply take αi to be the square root for which

Im(αi) is a square.
We reinterpret the bits of an input m as mi ∈ {−1, 1}. If mi = 1, we walk the path in

our bifurcation that is determined by +αi, and if mi = −1, we walk the path determined
by −αi. We can rewrite the relation between the curve coefficients (from Equation (4.5))
as

Ai+1 = 6miαi +Ai, (4.8)
Ci+1 = 4miαiAi + 8Ci . (4.9)

Similarly to CGL, this allows us to feed in an input m = m0m1 . . .mn−1, that results
in a deterministic path from a starting curve E0 to some output Em. We note that the
choice of parameters of the starting curve immediately excludes one possible path using
the formulas mentioned above, which correspond to the isogeny generated by the kernel
point (0, 0), so we do not need to take extra care at this first step other than preventing
a double edge at the start of the walk. Furthermore, backtracking is excluded by the
nature of the formulas themselves. We summarise our algorithm in Algorithm 1 below.

We are now building a proof system for the following relation

RCGL = {((E0, En);m) | En = CGL(E0,m)} , (4.10)
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Algorithm 1 CGL(E0,m): Novel variant of CGL using radical isogeny formulas
Require: Coordinates (A0, C0) ∈ Fp2 defining a supersingular elliptic curve E0 : y2 =

x3 +A0x2 + C0x, message m = m1m2 . . .mn ∈ {−1, 1}n
Ensure: Coordinates (An, Cn) ∈ Fp2 defining a supersingular elliptic curve En : y2 =

x3 +Anx
2 + Cnx

1: for i = 0 to n− 1 do
2: αi ←

√
Ci ▷ Start with arbitrary root

3: if Re(αi) ̸= 0 and Re(αi) is not a square then
4: αi ← −αi
5: else if Re(αi) = 0 and Im(αi) is not a square then
6: αi ← −αi
7: end if
8: Ai+1 ← 6miαi +Ai
9: Ci+1 ← 4miαiAi + 8Ci

10: end for
11: return (An, Cn)

where we denote CGL(E0,m) as the correct output of the algorithm in Algorithm 1
with input some starting curve E0 and a secret input m = m0 . . .mn−1 ∈ {−1, 1}n. The
proof system needs to show that Equations (4.8) and (4.9) has been computed correctly,
using the correct direction mi at every step.

We describe our proof system as a Rank-1 Constraint System (R1CS). The easiest
way to prove that an element of Fp is indeed a square is to again provide the square
root, which we will denote as βi, an element of Fp. In order to account for the correct
choice of αi, we introduce a conditional variable bi ∈ {0, 1}, which will need to be zero
if Re(αi) ̸= 0, and one otherwise. For βi, we do not need to distinguish which root we
are talking about, only that Re(αi) + biIm(αi) has a root. Together with the radical
isogeny formulae, we find the following system of equations

β2
i = Re(αi) + biIm(αi) (4.11)
α2
i = Ci (4.12)

Ai+1 −Ai = 6miαi (4.13)
Ci+1 − 8Ci = 4miαiAi . (4.14)

By plugging in Eq. (4.13) into Eq. (4.14) and scaling, we can reduce the cubic term in
Eq. (4.14) to a simple multiplication

3Ci+1 − 24Ci = 2Ai(Ai+1 −Ai) , (4.14)

removing the need for an extra constraint.
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Since we want to distinguish square roots via their residuosity, we need to reinterpret3

Fp2 = Fp(j) as Fp×Fp. First, we note that Equation (4.11), is written as two constraints
over Fp (due to the two quadratic terms in Fp elements) and can be expressed by
introducing the variable ti ∈ Fp:

ti = biIm(αi)
β2
i = Re(αi) + ti

We can write the squaring Equation (4.12) over Fp2 as two constraints over Fp, while
the multiplication in Equation (4.14) can be written as three constraints, using an
auxiliary value (see Section 4.3). Note that the multiplication in Equation (4.13) is
a multiplication of a scalar with an element from Fp, and thus can be written as two
constraints:

Re(Ai+1)− Re(Ai) = 6miRe(αi)
Im(Ai+1)− Im(Ai) = 6miIm(αi)

We are not done yet, since we need to prove consistency of the elements mi and bi. First,
we have to ensure mi ∈ {−1, 1}, and bi ∈ {0, 1}, which can be done with the constraints
over Fp:

(mi + 1)(mi − 1) = 0 (4.15)
bi(bi − 1) = 0 (4.16)

which is true if and only if mi ∈ {−1, 1} and bi ∈ {0, 1}. Finally, we also need to ensure
that bi = 1 if and only if Re(αi) = 0, and bi = 0 otherwise. This can be done by adding
the following constraints over Fp (with an additional variable ιi):

biRe(αi) = 0 (4.17)(
bi − Re(αi)

)
· ιi = 1 (4.18)

The first constraint ensures that at least one of bi or Re(αi) is zero; and the second
ensures that bi ≠ Re(αi), since their difference has an inverse ιi. Summing up, for a
path of length n, we have the variables:

Re(Ai), Im(Ai),Re(Ci), Im(Ci) for i = 0, . . . , n

and Re(αi), Im(αi), βi,mi, bi, ti, ιi, ui for i = 0, . . . , n− 1,
3An arithmetic circuit for encoding the function Re(·) would be prohibitively expensive (relying on

the frobenius identity xp = x if.f. x ∈ Fp)
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where ui is the intermediate variable required in Equation (4.14). For each i = 0, . . . , n−1,
we have 2 constraints for Equation (4.11), 2 constraints for Equation (4.12), 2 constraints
for Equation (4.13), 3 constraints for Equation (4.14) and one constraint for each
of Equations (4.15) to (4.18). Hence the constraint system amounts to

12n+ 4 variables and 13n constraints.

4.5 Proof of same CGL input.

For some applications (hinting towards Section 5.2), one might want to prove that two
paths in the 2-isogeny graph have been computed using the same (secret) input m,
starting from different elliptic curves. Let for example (E1, E2) and (F1, F2) be two
tuples of elliptic curves, then we can define the corresponding relation as

RCGL// = {((E1, E2, F1, F2);m) | E2 = CGL(E1,m) ∧ F2 = CGL(F1,m)} . (4.19)

This implies that we need a constraint system that realises Equations (4.11) to (4.18)
twice in parallel, with the same m as input. This means our R1CS will consist of the
constraints and variables from both computations, but with the same input m and one
common check of Equation (4.15). In total, this simple modification results in a proof
system with

23n+ 8 variables and 25n constraints
over Fp. We denote running this proof as π ← NIZK//.P (m, (E1, E2, F1, F2)), while
verifying it as 0/1← NIZK//.V (π, (E1, E2, F1, F2)).

4.6 Proof Systems for R1CS

At the time of writing [CLL23], the state-of-the-art proof system for R1CS operating over
FFT-friendly fields was Aurora [BCR+19]. However, the area has advanced significantly

Relation 4.1 Relation 4.10 Relation 4.19
Instance Size < 211 < 212 < 213

Prover Time (ms) 25 45 75
Verification Time (ms) 15 20 25
Proof size (kB) 230 320 430

Table 4.2: Rough performance estimates obtained from the proof system in [BFK+24,
Fig. 2] on the Radical isogeny R1CS instances over Fp (third row of Table 4.1). We set
λ = 128, and hence k = 256, and log2 p = 256.
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since early 2023, and as of 2024, there are now numerous candidates for the state-of-the-
art [XZS22, ZCF24, BFK+24, GLH+24, ACFY24]. Several of which are field agnostic,
they do not impose any conditions on the factors of F×q . Field agnostic SNARKs
are particularly well-suited for our application, since in isogeny-based protocols where
p = f

∏n
i=1 ℓ

ei
i − 1, it is not generally the case that |F×p | = p− 1 has sufficient 2-adicity

(or smoothness in the case of different interpolation domains) for FFT operations in a
SNARK. Indeed the case we consider in this work, where p = 2a · f − 1, we have that
p− 1 = 2(2a−1 · f − 1) which has a 2-adicity of 1. Succinct proof systems are challenging
to estimate performance for, especially in the case of isogeny computations, which
operate over large prime fields that require big integer arithmetic not natively supported
by proof system implementations. Since this would require substantial engineering effort
and great care in order to support zero-knowledge and the large field arithmetic, we
leave concrete implementation details and more accurate performance evaluations to
future work. However, we provide some rough estimates of the performance of the most
suitable candidate, [BFK+24]. Conveniently, they provide results for a 256-bit field in
their paper, in the context of proving ECDSA circuits. We provide their benchmark
results on R1CS instances of the relevant sizes in Table 4.2, which were performed on
an AWS c5a.16xlarge Ubuntu 22.04 machine with 64 cores and 124 Gb memory.
Remark 3. We note that their implementation does not include zero-knowledge, but
can be added using the known transformations of [BCG+17, BCR+19, XZZ+19]. This
typically adds a constant overhead to the protocol (e.g. 2-fold increase in instance size).
We also note that the performance results of [BFK+24] do not account for the further
optimisations present in [DP24], which are expected to reduce prover and verification
time by a factor of 2, and reduce proof size by a factor of

√
2. Since this matches

the asymptotic growth of doubling the instance size, we therefore expect that this
optimisation should account for the performance loss from adding zero-knowledge.



Chapter 5

Verifiable Random Functions from
Isogenies

A Pseudo-Random Function (PRF) is a keyed function whose outputs are indistinguish-
able from the uniform distribution on the image set, given that the distinguisher does
not know the key. PRFs are a powerful primitive which can be used to construct a
wide range of cryptographic protocols. For example, existence of PRFs imply provably
secure CPA encryption schemes, pseudorandom generators, and message authentication
codes. However, the existence of PRFs is a non-trivial assumption, and constructing
them from standard assumptions remains a wide open problem in cryptography.

A stronger requirement is the existence of a PRF that also has an associated efficient
proof of evaluation. More precisely, an efficient non-interactive proof of knowledge that
proves that x, y is a valid input-output pair for fk, without revealing the key k. While
it is plausible that PRFs instantiated via cryptographic hash functions are secure, (i.e.
setting fk(M) = HMAC(k,m) for an appropriate hash-based message authentication
code), it is challenging to construct efficient proofs of evaluation. Known approaches
using SNARKs (see Chapter 4) are slowly becoming more practical, but the underlying
evaluation circuit of a hash function is generally quite large. For example, a single
SHA-256 evaluation requires approximately 216 binary R1CS constraints [AHIV17].
This motivates our investigation into new PRF assumptions in the post-quantum setting.
More precisely, we consider Verifiable Random Functions (VRFs), which are PRFs with
an associated proof of evaluation, first introduced in [MRV99]. We note their properties,
which we discuss in the following section, slightly differ from conventional PRFs.

In this chapter we introduce an approach to construct VRFs from what we will
call unpredictable functions, a related notion to the functions introduced in the original
work of [MRV99], along with a non-interactive zero-knowledge proof of knowledge of
evaluation. As a novel contribution, we prove security of this “folklore” construction

48
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in the random oracle model. We note that our construction is very similar to the
concurrent work1 of [GS24], which additionally show that their construction (and by
equivalence, our construction) satisfies the stronger property of unbiasability. This
unbiasability property is a necessary property to ensure fairness in a VRF-based leader
election protocol, which was not implied by the existing properties of VRFs.

We show that isogenies are promising candidates for unpredictable functions, and
we instantiate our VRF with two isogeny settings: one where the function is based on
an optimised CGL hash function [CLG09] using radical isogenies [CDV20], and another
based on an SIDH-like construction, where the message input defines the kernel of
a 2a-isogeny. Both of these protocols rely on ad-hoc “one-more” type computational
assumptions which we introduce in their respective sections – essentially, that the
proposed isogeny-based functions satisfy the notion of unpredictability, as well as a
starting curve of unknown endomorphism ring, which requires trusted setup. We believe
that instantiations from other paradigms might be possible, and leave this open for
further research.

Statement of Authorship Contribution (Chapter 5) The following section is
based on the joint work [LP24]. All of the content included in this chapter which was
not in my own words has either been rewritten or expanded upon, and I am responsible
for the majority of the intellectual contributions of the content present in this chapter.
The security proof and the candidate functions, as well as the motivation of security,
was worked on in part by my co-author, Robi Pedersen.

5.1 Verifiable Random Functions

Verifiable random functions were first formalised by Micali, Rabin and Vadhan [MRV99].
They provide a mechanism for a user, with an associated public-private key pair, to
generate publicly verifiable randomness. The authors define a verifiable random function
(VRF) as a tuple of polynomial time algorithms ΠVRF = (SetUp,KeyGen,Eval,Verify)
with the properties below. Let K be the set of valid secret keys, and M be the set of
valid messages/inputs.

• SetUp(1λ) takes as input a security parameter λ and returns public parameters
pp.

• KeyGen(pp) takes as input public parameters pp and returns a secret-public key
pair (sk, pk).

1The authors of [GS24] rely on Verifiable Unbiasable Functions (VUFs), which are essentially
unpredictable functions with an associated proof, whereas we add the non-interactive proof separately
within the transformation. The resulting protocols are equivalent.
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• Evalsk(m) takes as input a secret key sk and an input string m ∈M, then returns
an output value h and a proof π of the correctness of h.

• Verifypk(m,h, π) takes as input the public key pk, the output h and proof π, as
well as the input m and returns either 1 or 0, indicating that it accepts or rejects
the proof.

The security of VRFs is formalised through three security properties. Provability
states that any correct evaluation of the VRF should result in an output pair that passes
the verification algorithm. Unique provability further implies that this output pair is
unique, i.e. that for a given input and public key, there do not exist distinct outputs that
correctly verify. Finally, any adversary interacting with the VRF-functionality should
not be able to find an input-output pair that passes verification. This is formalised in
the residual pseudorandomness property.

Definition 12 (Provability). For any input m ∈M, a correctly generated evaluation
will result in an accepting proof with overwhelming probability. Formally, the following
holds:

Pr

Verifypk(m,h, π) = 1
pp← SetUp(1λ)

(sk, pk)← KeyGen(pp)
(h, π)← Evalsk(m)

 ≥ 1− negl(λ) .

Definition 13 (Unique Provability). For any public key pk and any input m, there
does not exist two distinct evaluations which both have accepting proofs, except with
negligible probability. Formally, for all adversaries A, which may be computationally
unbounded (with at most polynomially many public coin queries),

Pr
[

Verifypk(m,h1, π1) = 1 ∧
Verifypk(m,h2, π2) = 1 ∧ h1 ̸= h2

pp← SetUp(1λ)
(pk,m, h1, π1, h2, π2)← A(1λ, pp)

]

is negligible in the security parameter λ.

Definition 14 (Residual Pseudorandomness). Let A = (A1,A2) be a PPT adversary
and H be a random oracle in the following game:

1. pp← SetUp(1λ)

2. (sk, pk)← KeyGen(pp)

3. (m∗, st)← AEvalsk(·),H(·)
1 (pk)

4. (h0, π0)← Evalsk(m∗)
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5. h1 ← {0, 1}2λ

6. b← {0, 1}

7. b′ ← AEvalsk(·),H(·)
2 (pk, hb, st)

A wins, if b = b′ and if it hasn’t queried Evalsk(m∗). A VRF satisfies the residual
pseudorandomness property, if Pr [A wins] ≤ negl(λ).

In this work, we also consider the notion we call weak unique provability, also called
computational uniqueness in [GOT19, EKS+21]. In some cases it is impractical to
ensure that the underlying key generation function in a VRF is injective. If this is not
the case, an unbounded adversary for Definition 13 can search for a collision sk, sk′
such that Verifypk(Evalsk(m)) = Verifypk(Evalsk′(m)), where in general it is not the case
that Evalsk(m) = Evalsk′(m). This relaxed definition accounts for the non-uniqueness of
secret keys corresponding to a fixed public key. Instead, it guarantees that colliding
secret keys are infeasible to find by requiring a computationally bounded adversary.

Definition 15 (Weak Unique Provability). It is computationally infeasible to construct
a public key pk and input m such that there exists two distinct evaluations which both
have accepting proofs. Formally, for all PPT adversaries A, the probability

Pr
[

Verifypk(m,h1, π1) = 1 ∧
Verifypk(m,h2, π2) = 1 ∧ h1 ̸= h2

pp← SetUp(1λ)
(pk,m, h1, π1, h2, π2)← A(1λ, pp)

]

is negligible in the security parameter λ.

5.2 A generic VRF construction

We will use the following syntax throughout this section.

Definition 16 (Unpredictable function). Let E and K be sets, and let

W : E × K → E

be a deterministic function. We further define SetUpUF(1λ) as a function which on
input a security parameter λ outputs an unpredictable function (W, E ,K) together with
an element E0 ∈ E called the starting element. We call (W, E ,K) unpredictable, if the
one-more evaluation problem on W is hard.

Problem 3 (One-more evaluation problem). Let Ok(·) be an evaluation oracle, which
for given public parameters pp and on input m ∈ K returns E ← W(W(E0,m), k).
Finally, let A be a PPT adversary for which we define the following game. On input λ:
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1. pp← SetUpUF(1λ). Parse pp as (W, E ,K, E0).

2. k ←$ K

3. Ek ←W(E0, k)

4. (m∗, E∗)← AOk(·)(Ek, pp)

5. A wins if E∗ = W(W(E0,m∗), k) and m∗ has not been queried to Ok(·) before,
and loses otherwise.

Note that the assumption that Problem 3 is hard implies that unpredictable functions
W are collision-resistant, since finding m,m∗ where W(E0,m) =W(E0,m∗) would lead
to an adversary who can find one more evaluation in Problem 3. Furthermore, we have
that W is non-commutative in the following sense

W(W(E0,m), k) ̸=W(W(E0, k),m) .

Otherwise, one could trivially break the assumption by sampling m∗ and computing
W(Ek,m∗).

Proof system. We let π ← NIZK.P (k, (E1, E2, F1, F2); pp) designate a non-interactive
zero-knowledge proof, which for a given input value k and tuples (E1, E2) and (F1, F2),
outputs a proof π for the following relation.

R =
{

(E1, E2), (F1, F2), k : E2 =W(E1, k) ∧ F2 =W(F1, k)
}
. (5.1)

A verifier can then run 0/1← NIZK.V (π, (E1, E2, F1, F2); pp) in order to verify a proof
π with regards to two tuples (E1, E2) and (F1, F2). The verifier outputs 0, if it rejects
the proof, and 1 otherwise.

5.2.1 Constructing VRFs from Unpredictable Functions.

In Figure 5.1, we present our construction for a VRF based on an unpredictable function
W and the proof system NIZK. The VRF evaluation simply consists of two consecutive
evaluations of W, first with input m, then with input k, and a proof that the second
path was computed correctly, i.e. using the secret key k that defines the public key Ek.

E0 Em =W(E0,m) E =W(Em, k)

and, E0 Ek =W(E0, k)

m k

k

At the end, the output, together with the input and the public key, are hashed using
a random oracle H : {0, 1}∗ → {0, 1}2λ. This allows to base our underlying hardness
assumption on the computational hardness of Problem 3, rather than a decisional one.
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SetUp(1λ)
1 : (W, E ,K, E0)← SetUpUF(1λ).
2 : return pp := (W, E ,K, E0)

KeyGen(pp)
1 : Parse pp as (W, E ,K, E0).
2 : k ←$ K
3 : Ek :=W(E0, k)
4 : return (sk, pk) := (k,Ek)

Evalsk(m; pp)
1 : Parse pp as (W, E ,K, E0).
2 : assert m ∈ K
3 : Em :=W(E0,m)
4 : E :=W(Em, sk)
5 : π1 ← NIZK.P (sk, (E0, Ek, Em, E); pp)
6 : return h := H(Ek,m,E), π := (π1, E)

Verifypk(h, (π1, E),m; pp)
1 : Parse pp as (W, E ,K, E0).
2 : Em :=W(E0,m)

3 : b1 ← h
?= H(Ek,m,E)

4 : b2 ← NIZK.V (π1, (E0, Ek, Em, E); pp)
5 : return b1 ∧ b2

Figure 5.1: Verifiable pseudorandom function from unpredictable functionW with setup
SetUpUF and zero-knowledge proof NIZK.

Remark 4. We note that lifting to a VRF via unpredictable functions is considered
folklore in the literature, but its security was not given formal treatment (in the random
oracle model in particular) until recently. During the writing of this work, a concurrent
result [GS24] also proved the security of this construction in the random oracle model,
using a closely related notion of Verifiable Unpredictable Functions (VUFs). VUFs are
unpredictable functions with the verifiability constraint included in their definition.
Given that unpredictable functions equipped with an NIZKPoK for Relation 5.1 satisfy
the property of VUF, their result implies that our resulting VRF construction, following
the compiler from [GS24, Fig. 9], also satisfies the stronger security notion of unbias-
ability. This property required to guarantee fairness in VRF-based leader election, as
required in VRF-based proof-of-stake protocols. We refer the reader to [GS24] for more
details.

Theorem 7 (Provability). The protocol from Figure 5.1 is provable if the proof system
NIZK is correct and sound.

Proof. If KeyGen and Evalsk are correctly executed, then indeed h = H(m,π2), fulfilling
the first verification condition. The second condition immediately follows from the
correctness and soundness of NIZK.



54 CHAPTER 5. VERIFIABLE RANDOM FUNCTIONS FROM ISOGENIES

Theorem 8 (Unique Provability). The protocol from Figure 5.1 is uniquely provable
if NIZK is sound and W(E0, ·) is injective, and weak uniquely provable if W(E0, ·) is
collision resistant.

Proof. Suppose an adversary’s two outputs (h, (π,E)) and (h′, (π′, E′)) are accepting for
the same input m and public key pk. We will show that if NIZK is sound and W(E0, ·)
is injective (resp. collision resistant), then with overwhelming probability, h = h′. Let
L be the language of Relation 5.1.

Since the proofs are accepting and since NIZK is sound, it must be the case that
both

h = H(Ek,m,E) ∧ (E0, Ek, Em, E) ∈ L ,
h′ = H(Ek,m,E′) ∧ (E0, Ek, Em, E

′) ∈ L ,

up to negligible probability. This implies that both

∃sk : Ek =W(E0, sk) ∧ E =W(Em, sk) ,
∃sk′ : Ek =W(E0, sk′) ∧ E′ =W(Em, sk′) .

In the case where W(E0, ·) is injective then it cannot be that sk ≠ sk′. If W(E0, ·) is
collision resistant and sk ̸= sk′, then the adversary has found a collision, which occurs
with most negligible probability. If sk = sk′, then E = E′ and finally h = h′.

Theorem 9 (Residual Pseudorandomness). Let ARPR be an adversary against the
residual pseudorandomness game from Definition 14. Let further BZK be an adversary
against the zero-knowledge property of NIZK and BOME an adversary against the one-
more evaluation problem defined in Problem 3. If A is allowed up to q queries to the
random oracle H and n queries to the Evalsk oracle, then

Adv(ARPR) ≤ nAdv(BZK) + qAdv(BOME)

Proof. We prove the statement using four game hops. Let Game0 be the residual
pseudorandomness game from Definition 14 and let A be an adversary against Game0
with advantage Adv(ARPR). We define an adversary BZK against the zero-knowledge
property of NIZK and an adversary BOME against the one-more evaluation problem
defined in Problem 3. Let E0 be a publicly available starting curve and let (sk, pk) =
(k,Ek) be the parameters of the one-more evaluation problem instance.

Game1: Let SNIZK be the zero-knowledge simulator of NIZK, which on input x simulates
a proof that x is a valid instance of Relation 5.1. We define Game1 similar to
Game0, except that whenever A queries Evalsk on some input m, the game proceeds
as follows.
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1. Query (h0, (π0, E))← Evalsk(m),
2. compute Em =W(E0,m),
3. query π′0 ← SNIZK(E0, Ek, Em, E),
4. return (h0, (π′0, E)) to A.

If A can distinguish Game1 from Game0, then clearly A can be used to break the
zero-knowledge property of NIZK. Assuming the number of A’s queries to Evalsk
is bounded by a parameter n, then the advantage of adversary BAZK against the
zero-knowledge property of NIZK,

Adv(BZK) ≥ 1
n

∣∣Pr(A wins Game1)− Pr(A wins Game0)
∣∣ .

Game2: In this game, whenever A queries Evalsk on some input m, the evaluation oracle
proceeds as follows:

1. Query E ←W(W(E0,m), sk),
2. query h← H(Ek,m,E),
3. query π′0 ← SNIZK(E0, Ek, Em, E),
4. return (h0, (π′0, E)) to A.

Since E = W(W(E0,m), k), the output (h0, (π′0, E)) is equal to Game1 and
therefore Game2 is perfectly indistinguishable from Game1.

Game3: This game proceeds exactly as Game2, except that the game simulates the
random oracle, i.e. whenever A queries the random oracle H, instead the game
samples h′0 ← {0, 1}2λ and returns it to A. The game keeps track of A’s queries
and returns the same output value for the same input value. Since the game
simulates the random oracle perfectly, this game is perfectly indistinguishable
from Game2.

Game4: We define Game4 in the same way as Game3, with the exception that the
random oracle H returns ⊥ if it is queried on a previously defined critical input
x∗ = (Ek,m∗, E∗), where E∗ = W(W(E0,m∗), k).2 If H is never queried on x∗,
then Game3 and Game4 are perfectly indistinguishable and have the same success
probability for the A. Let X∗ denote the event that H has been queried on x∗

and ¬X∗ the event that it hasn’t. We have

Pr(A wins Game3 | ¬X∗) = Pr(A wins Game4 | ¬X∗) . (5.2)
2This last step follows along the lines of the proof of [Ler23, Proposition 2].
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In particular, this allows us to bound the difference in probability to solve either
game as follows. Using the law of total probability, we find∣∣Pr(A wins Game3)− Pr(A wins Game4)

∣∣
=
∣∣(Pr(A wins Game3 | X∗)− Pr(A wins Game4 | X∗)

)
Pr(X∗)+(

Pr(A wins Game3 | ¬X∗)− Pr(A wins Game4 | ¬X∗)
)
Pr(¬X∗)

∣∣
Using Equation (5.2), the second term vanishes and we can bound∣∣Pr(A wins Game3)− Pr(A wins Game4)

∣∣ ≤ Pr(X∗) .

In a game where A cannot make the critical query x∗ to the random oracle, the
only way it can win Game4 is by guessing the correct output, which implies that
Pr(A wins Game4) = 1

2 , thus∣∣Pr(A wins Game3)− 1
2
∣∣ ≤ Pr(X∗) .

The reduction. We now show how BOME can turn an adversary A against
Game4 into an adversary against the one-more evaluation problem, which will we
use to bound Pr(X∗). Using the reasoning from above, A must query the random
oracle on (Ek,m∗, E∗) in order to successfully distinguish the challenged strings
h0 and h1. We therefore only need to consider the case where A does indeed send
(Ek,m∗, E∗) as a query to the random oracle. We argue that submitting this
query allows the algorithm BOME to learn E∗ =W(W(E0,m∗), k) and therefore
break the one-more evaluation problem. Let the number of random oracle queries
by A be at most q. BOME proceeds as follows. (For simplicity, set B = BOME

and A = ARPR.)

1. B samples i∗ ← {1, . . . , q} and h0 ← {0, 1}2λ.
2. B gets as input the public key Ek =W(E0, k) and sends it to A.
3. Whenever A sends its i-th query xi to the random oracle,

• if i ̸= i∗ then B simulates the random oracle truthfully and keeps a list
of A’s queries and the related outputs,

• if i = i∗ and xi∗ has been queried before, then B aborts, otherwise it
sends h0 to A and adds (xi∗ , h0) to the random oracle list.

4. Whenever A sends a query m to Evalk(·), B proceeds as follows:
(a) query E ← Ok(m),
(b) query h← H(Ek,m,E),
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(c) use the zero-knowledge simulator S from NIZK to build an accepting
proof π1 ← S((E0, Ek, Em, E)),

(d) send (h, (π1, E)) to A.
5. When A outputs m∗, B checks whether m∗ has already been sent by A as

a query to Evalk(·). In that case, B aborts and returns ⊥. Otherwise B
proceeds as follows:
(a) sample h1 ← {0, 1}2λ,
(b) sample b← {0, 1},
(c) send hb to A.

6. For any further query to H(·) or Evalk(·), B proceeds as in steps 3 and 4,
respectively.

7. At the end, A outputs b′.
8. If one can parse xi∗ as (Ek,m∗, E∗), then B returns (m∗, E∗).

Assuming that the query xi∗ was indeed (Ek,m∗, E∗), then this implies that B
outputs a pair (m∗, E∗) that has not been submitted to Ok, thus breaking the
one-more evaluation problem. By randomly guessing one out of q queries by A to
the random oracle, we find that Adv(BOME) ≥ 1

qPr(X∗).

Finally, we can compute the advantage of A against the original game Game0 using
the triangle inequality

Adv(ARPR) =
∣∣Pr(A wins Game0)− 1

2
∣∣

=
∣∣Pr(A wins Game0)− Pr(A wins Game4)

∣∣
≤
∣∣Pr(A wins Game0)− Pr(A wins Game1)

∣∣
+
∣∣Pr(A wins Game3)− Pr(A wins Game4)

∣∣
≤ nAdv(BZK) + qAdv(BOME) .

Theorem 10. Let NIZK be a NIZKPoK for relation 5.1 and let W be an injective
unpredictable function. Then Fig. 5.1 is a verifiable pseudorandom function (VRF) in
the random oracle model. If W is not injective (but still collision resistant), then the
protocol is a verifiable pseudorandom function (VRF) with weak unique provability.

Proof. Follows directly from Theorems 7 to 9.
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5.3 Instantiation from Radical CGL Isogeny Walks

In this section, we discuss why isogenies are well-suited candidates to instantiate our
VRF construction from Section 5.2. In particular, we instantiate the unpredictable
function W using the radical isogeny protocol CGL from Algorithm 1 over supersingular
elliptic curves.

5.3.1 Instantiating the Unpredictable Function

Formally, we define SetUpUF(1λ) as returning (CGL, E ,K, E0), where

• CGL is the function described in Algorithm 1,

• E defines the set of supersingular elliptic curves over a finite field Fp2 with
parameter size defined with respect to the security parameter λ (we discuss actual
parameters in Section 5.3.2),

• E0 ∈ E is a starting curve, and

• K is the set of input strings {−1, 1}e.

We can then interpret the VRF input m ∈ {−1, 1}e as a fixed-length, binary string
which defines a walk from the starting curve E0 to some curve Em, from which we then
start another walk, this time defined by the server’s secret key k ∈ {−1, 1}e towards the
final curve E. For the proof system, we use the proof of same input NIZK// described
in Section 4.5. The idea is for the server to show that it used its secret key k, which
connects E0 to the public key Ek = CGL(E0, k), also as an input to evaluate the VRF.
We get the picture below

E0 Em = CGL(E0,m) E = CGL(Em, k)

and, E0 Ek = CGL(E0, k) ,

m k

k

where the NIZK// proves that indeed the pairs (Em, E) and (E0, Ek) are connected by
the same k, according to Relation 4.19. In the next section, we discuss the suitability of
CGL as an unpredictable function and motivate the security of our instantiation.

5.3.2 Hardness of the One-more Evaluation Problem

We first discuss considerations which need to be taken into account when implementing
the CGL hash function in order to guarantee collision and pre-image resistance, which are
necessary to achieve unpredictability. We then motivate the hardness of the one-more
evaluation problem and discuss secure parameter sizes and efficiency of our protocol.
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Non-backtracking walks. We first note that the walks on the isogeny graph must
be non-backtracking, otherwise pre-image and collision resistance can be trivially
broken. By using the radical isogeny formulas, backtracking is inherently avoided, by
design [CDV20]. Each iteration only allows for two choices of outgoing isogenies, never
the dual of the prior step.

Pre-image resistance. Given that the walks are non-backtracking, for a curve Em
and a valid output curve Ek, computing a pre-image k such that Ek = CGL(Em, k)
corresponds to computing a cyclic 2e-isogeny from Em to Ek in the isogeny graph, which
is Problem 1. The best known classical attacks on this problem run in time O(2e/2)
via claw-finding attacks [JD11] and Õ(√p) via the volcano-finding algorithm of [DG16].
Hence, we require e ≥ 2λ and log p ≥ 2λ to target λ bits of classical security. Note that
the best known quantum attacks: quantum claw-finding[Tan09, Zha09] and quantum
volcano-finding [BJS14], require O(2e/3) and O(p1/4) steps respectively.

Collision resistance and endomorphism ring attacks. The function CGL(E0, ·)
defined over a fixed input length e is not in general injective Furthermore, in case
the attacker has knowledge of the endomorphism ring of the starting curve, they can
compute collisions as described in the attacks of [PL17, Section 4.2], by using the KLPT
algorithm [KLPT14]. In particular, in order to compute collisions, the attacker computes
cycles in the 2-isogeny graph from the starting curve. This attack can be prevented in
two ways, either (1) by using a starting curve E0 with unknown endomorphism ring,
via a trusted setup ceremony via techniques described in [BCC+23], or (2) by limiting
the message space to be short enough such there are no endomorphisms of length 22r

for r ≤ e. Existence of such cycles would admit a collision in the function CGL(E0, ·),
leading to the scenario where pk = CGL(E0, sk) = CGL(E0, sk′) for distinct sk, sk′, and
Evalsk(m) ̸= Evalsk′(m), violating weak unique provability, and the same collision would
also allow an adversary to find distinct m,m′ such that Evalsk(m) = Evalsk(m′), breaking
unpredictability. In our setting, we opt for trusted setup, as it is unclear how to construct
a prime p and curve E0 such that the conditions of (2) are satisfied. We stress that if an
efficient testing procedure for (2) is found, a public parameter could consist of a curve,
and a representation of its endomorphism ring, so that users may check the parameters
meet the conditions and therefore CGL(E0, ·) is injective, and the underlying VRF will
satisfy full unique provability. We leave this as future work.

Conjectured Hardness of the One-more Evaluation Problem. Given that the
function CGL(E0, ·) is pre-image and collision resistant, there are no trivial ways to
break the one-more evaluation problem via either recovering the secret key from the
public key, or finding collisions in the message evaluation. We further justify why the
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functions outputs are unpredictable, that is, why for possibly related messages m,m′,
the outputs CGL(CGL(E0,m), k) and CGL(CGL(E0,m′), k) appear uncorrelated. We
begin with a discussion which justifies our findings, followed by experiments to support
our claims.

Although the VRF evaluator reuses the same key directing walks on the supersingular
isogeny graph, starting at different curves Em, Em′ , there is no real algebraic connection
between different evaluations of the VRF. At the (i+ 1)th-step of the secret walk, given
that the i-th curve is Ei : y2 = x3 +Aix

2 + Cix, the direction of the walk dictated by
the bits of k is determined by which root of Re(

√
Ci) is a quadratic residue modulo p.

This is an arbitrary choice of ordering, which appears algebraically unrelated to the
structure of the graph itself, and depends on the underlying curve coefficients at every
step. This makes it difficult to correlate different evaluations of the VRF under the
same key.

Furthermore, one can quickly convince oneself that CGL(CGL(E0,m), k) =
CGL(E0,m ∥ k), if m and k are written with the least significant bit first. Con-
sider the tree of walks starting at the curve E0 dictated by m ∥ k for all m ∈ {−1, 1}n,
k ∈ {−1, 1}e. Such a tree, rooted at E0, may be viewed as a depth 2e subtree (with
a missing branch) of covering graph of the 2-supersingular isogeny graph: the 2-adic
Bruhat-Tits tree (see [AIL+21, GGLM24] for details of this correspondence). Observe
that if a single bit of a message is different, then the walk dictated by the remaining
string is in a completely different branch of the tree.

Experiments We further motivate this discussion with two experiments, which aims
to show that evaluations of f(m) = CGL(E0,m||k) on correlated messages leads to
uncorrelated outputs. In the first experiment, we look at the output distribution of f
for all 2e inputs, and compare it to the output distribution of CGL(E0, r) for an equally
many uniformly sampled r ∈ {−1, 1}2e. This is to confirm that the output distribution
of f is not skewed by the choice of a fixed key. We report our findings in Figure 5.2.
We did not find any observable bias.

In the second experiment, we investigate messages that differ only at the last bit.
Concretely, we perform the following on computationally feasible parameters (e, p).
First, we take a random walk of length 4 log p starting from E−1 : y2 = x3 + x to obtain
a curve in the graph to serve as the starting curve E0. We then sample a uniform key
k ←$ {−1, 1}e. For s iterations:

1. m ←$ {−1, 1}e, and r ←$ {−1, 1}2e. Let m′ be the message that differs from m
only at the last entry (i.e. the least significant bit).

2. Compute E = CGL(E0,m||k) and E′ = CGL(E0,m′||k) and E′′ = CGL(E0, r).
The idea is that we will compare the distance between E and E′ with the distance
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between E and E′′, a truly independent, random walk. If the two evaluations are
correlated, then we would expect the distance between E and E′ to be smaller
than the distance between E and E′′.

3. Perform a bounded distance Dijkstra’s search to compute d = d(E,E′) and
d′ = d(E,E′′), where d is the distance in G2(p). If d or d′ are less than some
threshold, we store the occurrence.

We report our results in Figure 5.3. Testing for graph distance d > 10 quickly becomes
infeasible as the search space grows to 3d. We report our results for a 13, 17 and 19
bit prime, for s = 100, 000 messages. Note that testing over 2000 iterations on a 31-bit
prime did not yield even a single pair (E,E′) or (E,E′′) that were 2r-isogenous for
r ≤ 10.
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E : j-invariants of supersingular curves
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Figure 5.2: Comparison between the distribution of j-invariants of CGL(m||k) and
CGL(r) for a fixed, uniformly sampled k ∈ {−1, 1}e, all possible inputs m ∈ {−1, 1}e,
and an equal number of randomly sampled r ∈ {−1, 1}2e. The dotted line indicates the
uniform distribution on the vertex set. Taken over p = 217 − 1, e = 17.

Secure parameters. In light of the previous discussion, we propose parameters for
the VRF in this section. Since generic proofs scale unfavourably with the size of the
underlying field of operation; we opt for log p ≈ 2λ, and trusted setup for obtaining an
E0 of unknown endomorphism ring; in the security model where collisions can exist,
but should be computationally hard to find.

We opt to set the lengths of the message and key walks to be equal and long enough
to ensure hardness of the isogeny problem (e ≈ 2λ).

Given these considerations, we state our security assumption below.

Conjecture 1 (Radical CGL one-more evaluation problem). The one-more evaluation
problem from Problem 3 is hard, when (W, E ,K, E0) ← SetUp(1λ) is instantiated as
follows.
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Figure 5.3: Comparison between close occurrences of correlated and random evaluations
of the radical isogeny CGL hash function. Correlated messages consist of all m′ such
that m′ differs only at the least significant bit. Experiment was performed using a fixed,
randomly sampled key on 10,000 iterations of m over p ∈ {213 − 1, 217 − 1, 219 − 1},
e = ⌈log2(p)⌉, k,m,m′ ∈ {−1, 1}e and r ∈ {−1, 1}2e.

• W is the radical CGL hash function CGL from Algorithm 1,

• E is the set of supersingular elliptic curves defined over the finite field Fp2 , where
log p ≈ 2λ,

• K is the set of binary strings {−1, 1}e of fixed length e ≥ 2λ, and

• E0 ∈ E is a starting elliptic curve of unknown endomorphism ring (obtained via
trusted setup).

5.3.3 Parameter and Proof System Selection

Due to the restrictions of our proof system from Chapter 4, we want to work with fields
of characteristic p ≡ 3 (mod 4) such as, for example, quasi-Mersenne primes of the form
p = c2e − 1. See the table of proposed parameters for NIST level I security in Table 5.1.
We choose our prime in order for their representations to require the minimal number
of 32-bit words (i.e. log p fits in the minimal multiple of 32).

We require post-quantum generic proof systems for R1CS that support Fp-arithmetic
with p ≡ 3 (mod 4). This implies that F×p has two-adicity of one, so we cannot use
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p n ⌈log p⌉
5 · 2248 − 1 256 251

Table 5.1: Proposed parameters for the CGL VRF for NIST level I security (λ = 128).

Reed-Solomon based SNARKs (such as those based on FRI [BBHR18]), which require
two-adicity logarithmic in the size of the circuit. Fortunately, recent developments in
SNARK literature have introduced field agnostic SNARKs for the context of proving
evaluations of the ECDSA verification circuit, which operate over p = 3 (mod 4).

Brakedown [GLS+23], its improvements and variants [Hab23, BFK+24]; Base-
Fold [ZCF24], and Orion [XZS22] fit our constraints and are viable candidates to
instantiate our NIZK. We choose the protocol of [BFK+24] as it is the current state-of-
the-art by all performance metrics.

Unfortunately, none of these sources have made a working implementation available
which both allows for arbitrary primes and zero-knowledge; so we must rely on the bench-
marked costs of the 256-bit prime used in [BFK+24]. Note that their implementation
(and indeed, all of the listed candidate SNARKs) do not provide zero-knowledge. We
emphasise this is achieved using standard techniques. See Remark 3. We cannot provide
a concrete estimate, but these measures are unlikely to cause substantial overhead
(and indeed are likely to be accounted for due to the optimisations not implemented
in [BFK+24]).

For path lengths of e = 256, we end up with 6400 constraints, and hence base our
results on circuits of size 213. We find the costs outlined in Table 5.2.

TKeyGen TEval TVerify |PK| |Output| Assumption
SL-VRF [BDE+22] 0.3 ms 765 ms 475 ms 48 B 40 kB Hash (LowMC)
LaV [ESLR23] ? ? ? 9 kB 10 kB Lattice (MSIS/MLWR)
DeuringVRF [Ler23] 127 ms 174 ms 20 ms 192 B 256 B Isogeny (OMIP)
Ours (Sec. 5.2) 5 ms 85 ms 30 ms 64 B 430 kB Isogeny (Problem 3)

Table 5.2: Comparison of our CGL-based VRF from Section 5.2 with other post-quantum
VRFs. We compare times for key generation, evaluation and verification of the VRFs, as well as
public key and total output size. We estimate performance of our parameters using the reported
results of [BFK+24] for a circuit of size 213 and a 256-bit prime, and estimating a 256-bit input
CGL evaluation as 5 ms.



64 CHAPTER 5. VERIFIABLE RANDOM FUNCTIONS FROM ISOGENIES

5.4 Instantiation from an SIDH-type Approach

In this section we instantiate the VRF construction from Section 5.2 via an SIDH-type
approach, avoiding the use of SNARKs. The relevant notation and details for how this is
done are given in Section 2.3.2. We then introduce a sigma protocol, a modified variant
of the protocol from [DDGZ22], which requires a decisional assumption. We remark
that the constructions resembles SIDH only in the existence of SIDH-squares, which
enables the use of the related sigma protocol, hence the isogeny walks are computed
via evaluating Vélu’s formulae to compute N -isogenies for prime power N . As per our
discussion in the following sections, the attacks of [MMP+23, CD23, Rob23] do not
apply to the sigma protocol or the unpredictable function itself, since an attacker does
not learn unmasked images of a coprime torsion basis. We start by introducing notation,
that we will use throughout this section in order to simplify the protocol descriptions.

Remark 5. While our overall focus is on achieving a practical SNARK-based approach,
we include the construction in this section for two reasons. First, it provides a comparison
to the other instantiation, based on a more conventional approach for isogenies via
sigma protocols. Second, it is technically more ready for implementation, since it is not
reliant on a suitable proof system. However, we do not claim this construction to be
more efficient or robust.

Notation. Since torsion groups are generated by two independent points, we will be
working with elements in a 2-dimensional vector space spanned by the generators. To
simplify notation, we will therefore generally use 2-dimensional vectors and matrices.
From now on, in this section, we will use the following notation.

Vectors are in bold, e.g. B = (P Q)⊤ or a = (a1 a2)⊤, where uppercase letters
usually stand for elliptic curve points and lower case for scalars. From this, we can
express linear combinations of points simply using the inner dot product

a ·B = a1P + a2Q.

We also denote ⟨B⟩ = ⟨P,Q⟩. For an isogeny ϕ that pushes through points B = (P Q)⊤,
we write

ϕ(B) =
(
ϕ(P )
ϕ(Q)

)
.

Matrices usually consist of scalars and will be applied to point vectors, e.g.

MB =
(
α β
γ δ

)(
P
Q

)
=
(
αP + βQ
γP + δQ

)
.
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5.4.1 Instantiating the Unpredictable Function

E the set of supersingular elliptic curves over Fp2 . We assume that all E ∈ E have
rational N -torsion which allows us to compute isogenies of degree N without working
in field extensions. We work with elliptic curves of Montgomery form (with second
coefficient B = 1) such that for all E ∈ E , the curve is represented by the equation

E : y2 = x3 +Ax2 + x.

We present our unpredictable function in Algorithm 2 below. We fix the key and message
spaces to be fixed length elements of K = ZN . We choose inputs of this form, rather
than P1(ZN ), in order avoid the possibility of distinct keys (or messages) leading to an
equivalent isogeny. The basic idea is that each element m ∈ K defines a unique kernel of
an isogeny. To this end, we need to define a basis B of E0[N ], so that we can compute
an isogeny given by the kernel ⟨(1,m)⊤ ·B⟩. In order to ensure a deterministic output
that is uniquely defined by the input m, we also need this basis to be deterministic
if we want to handle arbitrary evaluations of the walk function. We define BN as the
deterministic N -torsion basis sampling algorithm, which on input an elliptic curve E
outputs a basis B that generates E[N ]. We write this as

B← BN (E) .

For the rest of this section, we assume N = 2e for some e ∈ N. Deterministic bases
can for example be sampled as in the technique described in [ZSP+18, Algorithm 3.1].
To explicitly avoid backtracking, we can further employ the technique from [DPB24,
Algorithm 1] that transforms any basis into a non-backtracking basis. This is also
important for the second step of the protocol, where the evaluator needs to compute
the secret isogeny from the curve Em. In order to prevent backtracking, along with
the message m, our unpredictable function parses (E, T ) as public input: the starting
curve E, and a kernel generator T for a 2-isogeny which corresponds to the backtracking
direction of the previous isogeny walk. This ensures that VRF evaluations are inherently
non-backtracking. For simplicity, we write CGL-Vélu(E,m) when the backtracking check
is not required, such as when the initial walk of the VRF evaluation takes place.

This construction is a variant of the CGL hash function [CLG09] as first described
in [DPB24]. In [DPB24, Section 3] it was proven that this defines a one-way function
given the hardness of Problem 1. Note that our algorithm outputs an elliptic curve and
not a j-invariant.
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Algorithm 2 CGL-Vélu((E0, T0),m): Variant of the CGL Hash function from [DPB24]
Require: Supersingular elliptic curve E, (optional) point T ∈ E[2], message m ∈ K
Ensure: Evaluation E′, T ′

1: B← BN (E)
2: if not T0

?= NULL then ▷ Check that K = ⟨m ·B⟩ does not backtrack on T
3: Parse B as (P,Q)⊤.
4: if [2e−1]P = T then
5: B← (Q,P )⊤
6: else if [2e−1]Q ̸= T then
7: B← (P, P +Q)⊤
8: end if
9: end if

10: E′ ← E/⟨m ·B⟩
11: Obtain the 2-torsion point T ′ on E′ that backtracks on ϕ : E → E′.
12: return E′, T ′

5.4.2 A Sigma Protocol for Proving Evaluations

Given a deterministic basis sampling algorithm, we define the following relation

RN =
{

(E,F ), (E′, F ′),k
∣∣∣∣∣ F = E/⟨k ·B⟩ ∧ F ′ = E′/⟨k ·B′⟩
∧B← BN (E) ∧B′ ← BN (E′)

}
, (5.3)

and the associated language LN . The idea of this relation is to show that the same
key k has been used to connect two different pairs of elliptic curves uniquely. Note
that the RN does not uniquely fix the witness k, since ⟨P ⟩ = ⟨cP ⟩ for any c coprime
to P ’s order. As a result, given a witness k, any ck where gcd(c,N) = 1 is also a
valid witness for a given statement. This is however not an issue, as equivalent kernels
also lead to equivalent isogenies, so that any of the keys from the set, together with a
deterministic basis generation algorithm, uniquely fixes the isogeny. This will be enough
for our VRF. Throughout this section, one can see the key k as defined up to scalar
multiplication by such a c. Nevertheless, in order to minimise key size, key generation
should be performed by sampling k ←$ ZN and setting k = (1, k)⊤, (but we consider
scalar multiples equivalent).

We show our zero-knowledge proof in Figure 5.4. We require a secure (post-quantum)
commitment scheme Commit : {0, 1}∗ → {0, 1}2λ. This may be instantiated via a hash-
based commitments (i.e. Commit(x) = H(x||r), where r is a random nonce, for a
random oracle H). Our proof is based on the following pair of commutative diagrams, in
which we illustrate the steps of the proof. We note that [ϕ]∗ψ denotes the push-through
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of ψ through ϕ i.e. ker([ϕ]∗ψ) = ϕ(ker(ψ)), in order to construct an SIDH square as
in Definition 11.

E,A F

E1,A1 = Mψ(A),B1 E2,B2 = ϕ̃(B1)

E′,A′ F ′

E′1,A′1 = Mψ′(A′),B′1 E′2,B′2 = ϕ̃′(B′1)

ϕ

ψ ψ̃=[ϕ]∗ψ

ϕ̃=[ψ]∗ϕ

ϕ′

ψ′ ψ̃′=[ϕ′]∗ψ′

ϕ̃′=[ψ′]∗ϕ′

In order to simulate protocol transcripts for the following protocol, we introduce Prob-
lem 4, a close variant of [Bas24b, Problem 7]. However, this problem is strictly harder
than the prior, which includes additional torsion point information that leaks the action
of the horizontal isogenies. We remark that our version of double DSSP is unrelated
to the double DSSP problem from [DDGZ22, Definition 8], which involves two isogeny
squares with a common edge. For improved clarity we write our distributions via
sampling algorithms.

Problem 4 (Double DSSP Problem). Given supersingular curves E,F,E′, F ′, N-
torsion bases A ∈ E[N ]2 and A′ ∈ E′[N ]2 and isogenies ϕ : E → F and ϕ′ : E′ → F ′,
such that kerϕ = ⟨k · A⟩ and kerϕ′ = ⟨k · A′⟩ for some k ∈ Z2

N , construct a PPT
distinguisher A with non-negligible advantage, which takes as input (E,F,E′, F ′,A,A′)
for the distributions of D0 and D1 on input (E,F,E′, F ′,A,A′,k):
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D0(E,F,E′, F ′,A,A′,k)
1 : Sample random N ′-isogenies ψ : E → E1, ψ

′ : E′ → E′
1

2 : M ←$ SL2(ZN ), κ← kM−1

3 : A1 ←Mψ(A) and A′
1 ←Mψ′(A′)

4 : Construct N -isogenies ϕ̃ : E1 → E2 and ϕ̃′ : E′
1 → E′

2 such that
ker ϕ̃ = κ ·A1 = ψ(kerϕ) and ker ϕ̃′ = κ ·A′

1 = ψ′(kerϕ′)
5 : return (E1, E2,A1, E

′
1, E

′
2,A′

1, κ)

D1(E,F,E′, F ′,A,A′,k)
1 : Sample random N ′-isogenies ψ : E → E1, ψ

′ : E′ → E′
1

2 : M ←$ SL2(ZN ), κ←$ Z2
N

3 : A1 ←Mψ(A) and A′
1 ←Mψ′(A′)

4 : Construct N -isogenies ϕ̃ : E1 → E2 and ϕ̃′ : E′
1 → E′

2 such that
ker ϕ̃ = κ ·A1 and ker ϕ̃′ = κ ·A′

1

5 : return (E1, E2,A1, E
′
1, E

′
2,A′

1, κ)

We note that the only difference between the two distributions is that in D0 the curves
and isogenies are consistent with the two SIDH squares in the diagram above, (where
κ = kM−1), while in D1 they are not, where ϕ̃ and ϕ̃′ are essentially correlated, randomly
sampled isogenies. The first distribution is taken over the uniformly at random sampling
of ψ,ψ′ and M , while the second distribution is taken over uniformly at random sampling
of ψ,ψ′, κ, and M .

We note that the double DSSP problem requires logN ′ ≈ logN to guarantee the
hardness of solving for an N ′-isogeny ψ : E → E1 (or ψ′ : E′ → E′1). Recovering such an
isogeny would allow a distinguisher to recover the hidden matrix M , and thus “complete
the SIDH square” by checking that ϕ̃ and ϕ are indeed parallel isogenies.
Theorem 11. The protocol in Figure 5.4 is complete, three-special sound and (weak)
honest-verifier zero-knowledge for the relation RN , assuming the hardness of the Double
DSSP problem (Problem 4).

Proof.

Completeness. The correctness of the isogeny kernels immediately follows from the
definition in the proof step. The same argument applies to the point maps. In the
verification step for the case c = −1, we have that

(N ′M)−1ψ̂(A1) = (N ′M)−1ψ̂(Mψ(A)) = N ′−1M−1Mψ̂ ◦ ψ(A) = A ,
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P (E,F,E′, F ′,k; pp) V (E,F,E′, F ′; pp)

1 : Generate bases A← BN (E) and A′ ← BN (E′)
2 : Compute random N ′-isogenies ψ : E → E1,

and ψ′ : E′ → E′
1

3 : M ←$ SL(2,ZN )
4 : Set A1 ←Mψ(A),A′

1 ←Mψ′(A′), and κ← kM−1

5 : Sample bases B1 ← E1[N ′]2 and B′
1 ← E′

1[N ′]2

6 : Compute s, s′ such that:
⟨s ·B1⟩ = ker ψ̂ and ⟨s′ ·B′

1⟩ = ker ψ̂′

7 : Compute B2 = ϕ̃(B1) and B′
2 = ϕ̃′(B′

1) where
ker ϕ̃ = ⟨ψ(k ·A)⟩ and ker ϕ̃′ = ⟨ψ′(k ·A′)⟩

8 : r1, . . . , r5 ←$ {0, 1}λ

9 : C1 ← Commit(E1,A1,B1, E
′
1,A1

′,B′
1; r1)

C2 ← Commit(E2,B2, E
′
2,B

′
2; r2),C3 ← Commit(s, s′; r3)

C4 ← Commit(M ; r4),C5 ← Commit(κ; r5)
C1,C2,C3,C4,C5

c←$ {−1, 0, 1} : 1
c

if c = −1 then
10 : Send open−1 consisting of the inputs to C1,C3,C4
elseif c = 0 then
11 : Send open0 consisting of the inputs to C1,C2,C5
elseif c = 1 then
12 : Send open1 consisting of the inputs to C2,C3
fi

openc

if c = −1 then
Compute ker ψ̂ = ⟨s ·B1⟩ and ker ψ̂′ = ⟨s′ ·B′

1⟩ : 2
Verify ψ̂ and ψ̂′ are N ′-isogenies connecting
E1 → E and E′

1 → E′, respectively : 3
Compute A← BN (E) and A′ ← BN (E′) : 4

Verify N ′MA ?= ψ̂(A1) and N ′MA′ ?= ψ̂′(A′
1) : 5

elseif c = 0 then
Compute ker ϕ̃ = ⟨κ ·A1⟩ and ker ϕ̃′ = ⟨κ ·A′

1⟩ : 6
Verify that ϕ̃ and ϕ̃′ are N -isogenies connecting
E1 → E2 and E′

1 → E′
2, respectively : 7

Verify B2
?= ϕ̃(B1) and B′

2
?= ϕ̃′(B′

1) : 8
elseif c = 1 then

Compute ker ˆ̃ψ ← ⟨s ·B2⟩ and ker ˆ̃ψ′ ← ⟨s′ ·B′
2⟩ : 9

Verify ˆ̃ψ and ˆ̃ψ′ are N ′-isogenies connecting
E2 → F and E′

2 → F ′, respectively : 10

Figure 5.4: 3-special sound Σ-protocol for Relation 5.3.



70 CHAPTER 5. VERIFIABLE RANDOM FUNCTIONS FROM ISOGENIES

since ψ̂ ◦ ψ = degψ = N ′.

3-Special Soundness. We show how to extract k from three accepting transcripts for
c = −1, c = 0 and c = 1. Since Commit is computationally binding, the prover
is not able to open the commitments to different values with all but negligible
probability. We can therefore assume that (omitting the random nonces r1, . . . , r5)

open−1 = (E1,A1,B1, E
′
1,A1

′,B1
′, s, s′,M)

open0 = (E1,A1,B1, E
′
1,A1

′,B1
′,E2,B2, E

′
2,B′2, κ)

open1 = (E2,B2, E
′
2,B′2, s, s′)

with all values consistent along the three transcripts. We can directly recover
k = κM from open−1 and open0, but first have to argue that this is indeed the
value we want to extract.
The first thing we want to note, is that both sets of elliptic curves (E,E1, F, E2)
and (E′, E′1, F ′, E′2) each define an SIDH-square. We only show the former as
the latter follows in the exact same way. We know that ker ψ̂ = ⟨s · B1⟩ and
ker ˆ̃ψ = ⟨s ·B2⟩ and that B2 = ϕ̃(B1), therefore

ker ˆ̃ψ = ⟨ϕ̃(s ·B1)⟩

defines the push-forward isogeny of ψ̂ through ϕ̃ and (E,E1, F, E2) is indeed an
SIDH square. Now, since ker ϕ̃ = ⟨κ ·A1⟩ defines a kernel of degree N , [DDGZ22,
Lemma 2] implies that there exists an isogeny ϕ : E → F of degree N . The kernel
of ϕ is then the push-forward of ker ϕ̃ through ψ̂,

kerϕ = ψ̂(ker ϕ̃) = ⟨ψ̂(κ ·A1)⟩

Plugging in A1 = Mψ(A), we find

kerϕ = ⟨(κ ·M) ·A⟩ .

In exactly the same way, we also find

kerϕ′ = ⟨(κ ·M) ·A′⟩ .

The extractor can therefore return κ ·M , which corresponds to a valid instance-
witness pair for Relation 5.3, since by construction A = BN (E) and A′ = BN (E′).

(Weak) Honest-Verifier Zero-Knowledge. Let S be a simulator, which on input
(E,F,E′, F ′), and challenge c, outputs the following, conditioned on c:
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c = −1 : S computes the inputs to C1, C3 and C4 as in the real execution of the
protocol. Further, S samples3 C2,C5 ← {0, 1}2λ. Since C1, C3 and C4 are
computed as in the real execution of the protocol, it is clear that the protocol
accepts and that these values are perfectly indistinguishable from the real
execution of the protocol. By the perfect hiding of Commit, C2 and C5 are
also indistinguishable from the real execution.

c = 0 : S generates C1, C3 and C4 exactly as in the real execution of the protocol.
Then, S samples κ← Z2

N and r5 ← {0, 1}λ and computes C5 = Commit(κ; r5).
Now, S computes ϕ̃ : E1 → E2 and ϕ̃′ : E′1 → E′2 given by the kernels
ker ϕ̃ = ⟨κ · A1⟩ and ker ϕ̃′ = ⟨κ · A′1⟩, and pushes through B2 = ϕ̃(B1)
and B′2 = ϕ̃′(B′1). Finally S samples r2 ← {0, 1}λ and computes C2 =
Commit(E2,B2, E

′
2,B′2; r2), which will result in an accepting protocol. We

note that the commitment phase is identically distributed by the perfect
hiding property of the commitment scheme. What remains is to show that
open0 is computationally indistinguishable from real executions. For this
we rely on Problem 4. We show how a distinguisher for real and simulated
transcripts yields a distinguisher for the Double DSSP problem (Problem 4).
The double DSSP distinguisher constructs the commitments and openings
for C3, C4, in the same way as the simulator, and it uses the sample from
the distribution to build the remaining commitments C1 and C2 and C5.
Given sample (E1, E2,A1, ϕ̃, E′1, E

′
2,A′1, κ), the distinguisher samples bases

B1 and B′1 and computes B2 = ϕ̃(B1) and B′2 = ϕ̃′(B′1), where ϕ̃ and
ϕ̃′ are the isogenies given by kernels κ · A1 and κ · A′1 respectively. The
distinguisher then computes C1 = Commit(E1,A1,B1, E

′
1,A1

′,B′1; r1), C2 =
Commit(E2,B2, E

′
2,B′2; r2), C3 = Commit(s, s′; r3), C4 = Commit(M ; r4) and

C5 = Commit(κ; r5). Finally, the distinguisher sends this transcript to
the zero-knowledge distinguisher for c = 0. Clearly, the distribution of
transcripts is identical to the real protocol executions when the Double DSSP
distribution is D0, and the distributions of transcripts are identical to the
simulated protocol when the Double DSSP distribution is D1.

c = 1 : S samples two N ′-isogenies ψ̃ : F → E2 and ψ̃′ : F ′ → E′2, then samples
random bases B2 and B′2 on E2 and E′2, respectively and solves for s, s′,
such that ⟨s ·B2⟩ = ker ˆ̃ψ and ⟨s′ ·B′2⟩ = ker ˆ̃ψ′. Finally S computes C2 =
Commit(E2,B2, E

′
2,B′2; r2) and C3 = Commit(s, s′; r3) for r2, r3 ← {0, 1}λ

and samples C1,C4,C5 ← {0, 1}2λ. E2 and E′2 are sampled equivalently to
the real protocol, in the sense that there always exist ψ : E → E1 and

3Note that this assumes the commitment scheme has uniform output {0, 1}2λ, which differs slightly
from the definition of perfect hiding. To precisely match the security definitions, the simulator can just
set C2 and C5 to be commitments to arbitrary dummy messages.
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ψ′ : E′ → E′1 to generate a SIDH square, and are therefore indistinguishable.
It is clear that the protocols accepts. For every simulated transcript where
B2 and B′2 are randomly sampled, there is a corresponding real protocol
transcript where the random sampling of B1, B′1 leads to an identical
transcript. Therefore they are distributed identically. This implies that s
and s′ are also indistinguishable. Finally, since Commit is perfectly hiding,
C1, C4 and C5 are also indistinguishable from the real execution.

Using the Fiat-Shamir transform, we can turn this proof system in to a non-interactive
zero-knowledge proof. Since a malicious prover can cheat with probability 2

3 , we have
to repeat the protocol λ log2 3 times to get a negligible soundness error of 2−λ.

We refer to the non-interactive version of the proof as NIZKLN
and define the

following API.

• The proof π ← NIZKL.P (s; k) takes as input the statement s and the witness k
and returns a proof π.

• The verification 0/1← NIZKL.V (s;π) takes as inputs the statement and a proof,
an returns 0 or 1.

Comparison to other proof systems. We would like to discuss similarities and
differences of our proof system with concurrent proof systems from the isogeny liter-
ature. In fact, our proof system builds on the proof of isogeny knowledge introduced
in [DDGZ22, Section 5], but extends it in a way to prove knowledge of two isogenies
and a specific relation between them, which is defined through the language LN . In
particular, our system evokes a concept similar to the zero-knowledge proof of equality
of appended values from the OPRF design by Boneh, Kogan and Woo [BKW20, Sec-
tion 6] and the proof of parallel isogenies from the follow-up work by Basso [Bas24b,
Section 6]. These proof systems try to convince a verifier that some isogeny has been
computed “in the same way” as some previously computed isogeny, the latter usually
being the one connecting the starting curve to the public key. In that sense, these proofs
show that the secret key has also been used in the new isogeny computation, which
convinces the verifier that the prover knows and has used the secret key correctly in
its evaluation. This idea is also reflected in our construction, yet the proof systems
from [BKW20, Bas24b] have a much stronger requirement, i.e. that the isogenies are
parallel in the traditional sense, i.e. the four curves involved form a SIDH square. The
issue with these kinds of proofs is that the prover needs auxiliary points, which after
the SIDH attacks [MMP+23, CD23, Rob23] need to be masked [FMP23]. This results
in very large parameters (for example [Bas24b] uses a 8868-bit prime) and therefore
expensive computations and large outputs. There doesn’t seem to be an easy way
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around this when building OPRFs, but our VRF is much more flexible in that regard.
As long as the prover shows to have used its secret key correctly and the output is
deterministic, there is no need for any notion of parallel isogenies. Our proof therefore
only forces the prover to use the same secret key as input, which deterministically fixes
the output of the VRF, and in particular prevents the need of using masked points,
strongly reducing the necessary parameters. As a further bonus, active attacks in the
style of [GPST16, BKM+21], taking advantage of reusing the same point maps multiple
times also do not apply to our setting.

5.4.3 Hardness of the One-more Evaluation Problem

We introduce the following hardness assumption, which is essentially equivalent to Con-
jecture 1, but in the context of a different variant of the CGL hash function, which
is Algorithm 2 rather than Algorithm 1. We note that in order to use the proof of
parallel evaluation from Section 5.4.2, we are now required to work over a prime which
supports coprime torsion subgroups E[N ] and E[N ′]. In this case, for efficiency and
compatibility, we rely on the parameterisation used in SIDH, which sets N = 2e and
N ′ = 3f , and choosing a prime p = 2e3f − 1 such that 2e ≈ 3f ≈ 22λ in order to
guarantee rationality of torsion.

Conjecture 2 (Vélu CGL one-more evaluation problem). The one-more evaluation
problem from Problem 3 is hard, when (W, E ,K, E0) ← SetUp(1λ) is instantiated as
follows.

• W is the Vélu CGL hash function CGL-Vélu from Algorithm 2.

• E is the set of supersingular elliptic curves defined over the finite field Fp2 , where
p = 2e3f − 1 for 2e ≈ 3f ≈ 22λ.

• K is the set of binary strings {0, 1}e.

• E0 ∈ E is a starting elliptic curve of unknown endomorphism ring (obtained via
trusted setup).

We remark that the truth of this conjecture is closely related to the truth of Conjec-
ture 1, and the same security considerations apply. The only additional consideration
is that we are required to increase our prime size to p = 2e3f − 1 in order to have
rational 2e- and 3f -torsion. We require 2e ≈ 22λ to guarantee the hardness of computing
pre-images and collisions of the unpredictable function, and 3f ≈ 22λ to guarantee the
hardness of Problem 4, since an adversary who can solve for an isogeny of degree 3f
ψ : E → E1 (or ψ′ : E′ → E′1) can distinguish between the two distributions D0 and D1.
Assumptions of this type go back to the discrete logarithm setting [BNPS03], and in
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the isogeny setting, the auxiliary one-more SIDH assumption from [BKW20] as well as
the one-more unpredictability from [Bas24b] in the context of OPRFs, are related to our
assumption.4 In essence, our assumption can be seen as a non-commutative version of
the one-more predictability assumptions in [BKW20, Bas24b]. A key and message define
coprime kernel generators K and M where the output of the OPRF is E/⟨M,K⟩ and
(E,E/⟨K⟩, E/⟨M⟩, E/⟨M,K⟩) describes an SIDH square. Thus it would be sufficient
to push a basis on E through to E/⟨K⟩ to break one-more unpredictability, even when
this basis is masked. We emphasise that in our setting this is not enough, as it is not in
general the case that there is a “parallel” isogeny from W(E0,k) to W(W(E0,m),k),
since the secret and message isogenies are not coprime.

In fact, in our case, the evaluator does not even act with the “same” secret K
in the sense that it defines a parallel isogeny to its secret isogeny. The algebraic
relationship between repeated evaluations of isogenies determined by k on distinct
curves Em is completely determined by the basis algorithm BN . Provided BN behaves
in an unpredictable manner, the evaluator simply applies its secret scalar k to many
unrelated bases and reveals the codomain of this action. To further this point, suppose
we model BN as a random oracle, then the isogeny given by the kernel ⟨k · BN (Em)⟩
admits no algebraic structure, since for all N -isogenies ϕ originating from Em there will
be a corresponding instantiation of a random oracle that yields a suitable basis such
that kerϕ = ⟨k · BN (Em)⟩. As a consequence, we conjecture that our assumption is at
least as hard to break as the hardness assumptions in [BKW20, Bas24b].

We would also like to point out that there exist other, at least semantically related
hardness assumptions to ours in the isogeny setting, most notable the one-more isogeny
problem introduced in the context of the VRF from [Ler23] and of course the one-more
unpredictability of the CGL hash function-based VRF from Section 5.3. We note that
the former reveals 2- or 4-dimensional representations of prime degree isogenies from
the same starting curve, while the latter reveals image curves which are directed along
paths from Em to Ek by the same key. Due to the difference in the settings, a direct
comparison of the security assumption of [Ler23] and our work is not possible. However,
we may view both of our hardness assumptions as special cases of the unpredictable
function W being variants of the CGL hash function.

5.4.4 Parameter Selection

In order to make the isogeny evaluations efficient, we need a large rational 2e-torsion.
For the proof system, we need another large torsion group, which for efficiency reasons,
should be a large rational 3f -torsion. Thus, we can work over primes of the form

4Note that there is an active attack against [BKW20] in [BKM+21] that is mitigated in [Bas24b] by
using irrational isogenies. We note that these attacks do not apply to our setting, as there are never
any point maps revealed as part of our evaluation.
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p = c2e3f − 1, for c a small co-factor. For the standard attacks not to work, it suffices
that 2e ≈ 3f ≈ 22λ for a security parameter λ.

Taking the NIST-level 1 SIKEp434 prime p = 22163137 − 1 and setting λ = 128,
we find the following average run times and sizes. The benchmarks were made on a
Intel(R) Core(TM) i7-10750H CPU with 2.60GHz. We note that our implementation is
not optimised, so we expect some speedup in the running times of our algorithms.

KeyGen Eval Verify PK size Proof size
14 ms 20 sec 9 sec 54 bytes 431 kB



Chapter 6

Cryptanalysis: Flawed Proofs of
Knowledge

Cryptographic security proofs are challenging, and even the most well-intentioned
cryptographers can miss subtle differences in security properties. This is particularly
true in the realm of zero-knowledge proofs, where there are many variants of zero-
knowledge and soundness, each possessing subtly different requirements and benefits.
Indistinguishability must be defined as either perfect, statistical or computational, which
is often not differentiated in poorly written proofs of security. Security properties can
be overlooked when they do not apply to the construction in the original paper, but
must be taken into account in follow up works, running the risk of being “swept under
the rug”.

A clear example of this is attempting to construct ring signatures from SQI-
sign [DKL+20], which requires the careful consideration of the variants of Special
Honest Verifier Zero-Knowledge (HVZK). HVZK, loosely speaking, requires that the
distributions of a prover’s transcripts (who knows the witness for an instance) is in-
distinguishable from the distribution of a simulator’s transcripts (who does not know
the witness) when interacting with an honest verifier whose challenge is chosen in
advance. An often missed consideration of this property is whether the distinguisher is
given access to the witness, which differentiates strong and weak special HVZK. This
differentiation is of particular importance to the security of ring signatures obtained via
OR-composition of an underlying proof of knowledge. More specifically, in the security
game for anonymity against full key exposure, a distinguisher is given the witness for
the special HVZK proof, which may compromise the indistinguishability of transcripts
(and thus break anonymity) in the event that the underlying proof is only weak special
HVZK. It was shown in [BLL24] that SQIsign is only weak special HVZK, and hence
new approaches must be taken to construct ring signatures from this primitive. In this
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chapter, we find three examples of flawed cryptographic protocols, the faults of which
originate from flawed security proofs for the zero-knowledge and knowledge soundness
properties of a sigma protocol (or in the case of CROSS, a related notion known as a
(q, 2)-identification scheme).:

In the first case, the authors of a variant of the SeaSign signature scheme [Kim24]
claim to have eliminated the need for rejection sampling, a technique used to prevent
leakage of information about the secret key. In the proof for the zero-knowledge property,
they claim that the responses to challenges equal to 0 are independent of the secret key
(and thus implied to be simulatable). In Section 6.1, we show that this is not the case,
and in fact are biased by the secret key which leads to a key recovery attack. This work
was independently published by the author of this thesis in [Lev25a].

In the second case, we return to the classical setting of sigma protocols for proving
arithmetic relations on Pedersen commitments. ZKAttest [FLM22] construct a sigma
protocol for users to prove knowledge of a discrete logarithm of a commitment to
an elliptic curve point. This has applications in anonymous attestation, for proving
knowledge of a valid signature corresponding to an authorised public key [CDH+23]. The
protocol suffers from an issue relating to its proof of special soundness. In particular, the
extractor does not cover all possible cases of transcripts. We provide a detailed analysis
of the soundness issues in Section 6.2 and provide a fix for the protocol in Section 6.3.
This work was independently published in [CLR24].

Lastly, in Section 6.4, we consider the identification scheme used to construct the
CROSS digital signature [BBB+24]. We point out that they do not satisfy their stated
definition of zero-knowledge by constructing a distinguisher to distinguish real and
simulated transcripts given access to the witness. Moreover, we show that the real and
simulated transcripts are not statistically indistinguishable, and therefore the protocol
can only satisfy weak computational (rather than strong, statistical or perfect) Honest
Verifier Zero-knowledge. This issue is still present in version 2.0 updated on January 31,
2025, which resolves the security losses attained via the attacks of [BLP+25]. The work
in this section was submitted as a note on the IACR ePrint archive [Lev25b].

Statement of Authorship Contribution (Chapter 6) The following section is
based on the joint work of [CLR24], and the solo-author works of [Lev25a, Lev25b]. All
of the content included in this chapter which was not in my own words has either been
rewritten or expanded upon, and I am responsible for the majority of the intellectual
contributions of the content present in this chapter. The sections Sections 6.2 and 6.3,
from the work of [CLR24], were a collaboration during an internship at Brave research
and permission has been granted to include this work in my thesis. Of the co-authors, Celi
was responsible for the idea of investigating the work of ZKAttest, and otherwise provided
supervisory and writing support. Rowell was responsible solely for the implementation
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which is not included in this thesis.

6.1 A Key Recovery Attack on a Leaky Variant of Seasign

In this section we discuss a protocol which was vulnerable to a key recovery attack,
essentially due to the fact that it is not zero-knowledge. The authors failed to provide a
detailed security proof, which may be the cause for this oversight.

SeaSign is an isogeny group-action based signature scheme, first proposed by De
Feo and Galbraith[DG19], and later refined by [DPV19]. The scheme is derived from
a sigma-protocol for a proof of knowledge of a one-way function obtained by isogeny
group-actions. The security of SeaSign relies on rejection sampling, in a Fiat-Shamir-
with-aborts [Lyu09] setting, where the prover may restart the protocol in order to
prevent leaking information about the secret. The core idea is to ensure that the
responses sent by the signer, which are either ephemeral values or differences between
ephemeral values and the secret key, remain within specific bounds. If a response falls
outside these bounds, the signer aborts the protocol and restarts, thereby preventing
any unintended leakage of information about the secret key.

However, the work by Kim [Kim24], introduces a variant of the SeaSign scheme
that attempts to bypass the need for rejection sampling, eliminating the potential
for unnecessary computations caused by protocol aborts and restarts. The proposed
variant claims to achieve this by pre-sampling commitment vectors such that responses
will be distributed uniformly for either challenge bit, independent of the secret key.
However, we show that this approach inadvertently introduces a bias in the distribution
of the responses. The signer’s attempt to avoid rejection sampling by pre-sampling
commitment vectors leads to a situation where certain responses become impossible,
depending on entries of the secret key.

6.1.1 The SeaSign Variant in [Kim24]

Since the cryptanalysis in this section does not depend on the technical nature of
isogeny-based group actions, we will not delve into the technical details of the SeaSign
scheme. Instead, we will briefly describe the relevant features of SeaSign signature
generation, and include a description of the variant proposed by Kim [Kim24].

Group-actions in Isogenies. When working with elliptic curves and isogenies over a
prime field Fp, isogeny computations can be abstracted using the group action framework.
For an introduction into group actions from isogenies, we point the interested reader
to the original paper by Couveignes [Cou06] as well as to the CSIDH paper [CLM+18]
for its instantiation in the supersingular case. In this section, we satisfy ourselves with
introducing the group action framework abstractly.
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The SeaSign scheme in [DG19]. SeaSign is based on an identification protocol
where the secret key corresponds to a secret vector e ∈ [−B,B]n which is used as input
to a one-way function:

f(e) = ie1
1 · . . . · i

en
n ⋆ E = E′

where E,E′ are elliptic curves, and ii are elements of the ideal class group of End(E),
which defines an regular, effective group action on the set of supersingular curves over
a finite field Fp. The public key corresponds to E′, and the signature is a proof of
knowledge that the signer knows the secret key e, with the message tied into the
randomness of the challenge computation.

As part of the original protocol, the signer samples, and commits to, random vectors
f (j) ←$ [−(δ + 1)B, (δ + 1)B]n for j ∈ {1, . . . , t}. After receiving t single bit challenges,
for each challenge cj , the signer either sends f (j) if cj = 0 or f (j) − e if cj = 1. However,
for cj = 1, the signer leaks some information about the vector e, since the distribution
of f (j) − e is not uniform in [−(δ + 1)B, (δ + 1)B]n. To avoid this, rejection sampling is
used. After computing the challenge, if a response vector, which is either f (j) or f (j)− e,
is not in the bound [−δB, δB]n, the signer aborts the protocol and restarts. This is
repeated until the signer sends a valid response.

Modifications to Signature Generation in [DPV19]. The approach is refined in
the follow up work [DPV19] where aborts are avoided in the case that cj = 0, since this
only reveals the ephemeral values f (j), and leaks nothing about the secret. Furthermore,
given t iterations of the sigma protocol, their protocol tolerates up to u aborts (for
u < t) before the protocol must be re-executed, which substantially improves signature
generation efficiency.

Modifications to Signature Generation in [Kim24]. The approach of [Kim24]
differs from these two prior works by attempting to avoid rejection sampling completely,
by pre-sampling commitment vectors f (1), . . . , f (t) such that f (j) − e ∈ [−δB, δB]n.
Since the signer would not need to abort and restart the protocol, this would prevent
unnecessary isogeny computations, speeding up signing time. However, the key difference
is that the signer cannot know what the challenge bits will be in advance, and cannot
prevent bias in the distributions of the responses.

6.1.2 Key Recovery Attack

We now state an attack on signatures generated by Algorithm 3. Suppose that we are
given samples

f ←$ [−(δ + 1)B, (δ + 1)B]n, such that f − e ∈ [−δB, δB]n
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Algorithm 3 Signature Generation in [Kim24]
Require: message m, pk = (E,EA), secret key e ∈ [−B,B]n
Ensure: σ = (z(1), . . . , z(t), c1, . . . , ct) ▷ z(j) ∈ [−(δ + 1)B, (δ + 1)B]n, cj ∈ {0, 1}

1: cnt← 1
2: while cnt ≤ t do
3: f (cnt) ←$ [−(δ + 1)B, (δ + 1)B]n
4: b← f (cnt) − e
5: if b ∈ [−δB, δB]n then ▷ Resample if out of acceptable bound
6: z(cnt) ← f (cnt)

7: Ecnt ← i
f (cnt)
1

1 . . . if
(cnt)
n
n ⋆ E

8: cnt← cnt + 1
9: end if

10: end while
11: c1, . . . , ct ← H(j(E1), . . . , j(Et),m) ▷ Compute the challenge bits
12: for j from 1 to t do
13: if cj = 0 then
14: z(j) ← z(j) ▷ The leaky case, if cj = 0
15: else
16: z(j) ← z(j) − e
17: end if
18: end for

for a fixed, uniform secret e ∈ [−B,B]n. The first observation is that the i-th entries of
sampled vectors are uniformly distributed in the set,

fi ←$ [−δB + ei, δB + ei],

which is clearly a distribution dependent on the secret e. In order to exploit this key
dependence, our attack amounts to determining the unknown upper and lower bounds
for the distribution above. Suppose you are given m samples f (1), . . . , f (m). For each
i ∈ [n], we define

ai = min
j∈[m]

(
f (j)
i + δB,B

)
bi = max

j∈[m]

(
f (j)
i − δB,−B

)
(6.1)

Theorem 12. Given m vectors {f (j)}j∈[m] such that, for all j ∈ [m] and some fixed
e ∈ [−B,B]n, it holds that f (j) ∈ [−(δ + 1)B, (δ + 1)B]n and f (j) − e ∈ [−δB, δB]n.
Then for i ∈ [n] and ai’s and bi’s computed as per Equation (6.1), we have that
ei ∈ [bi, ai]. In particular, if ai = bi, then ei = ai = bi.

Proof. Suppose that ei /∈ [bi, ai]. Since ei ∈ [−B,B], we consider either the case that:
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ei < bi: in which case bi ̸= −B (since ei ≥ −B), and there exists some maximal f (j)
i

such that f (j)
i = bi + δB. Then f (j)

i − ei = bi + δB − ei > δB, which contradicts
the assumption that f (j) − e ∈ [−δB, δB].

ei > ai: in which case ai ̸= B (since ei ≤ B), and there exists some minimal f (j)
i such

that f (j)
i = ai − δB. Then f (j)

i − ei = ai − δB − ei < −δB, which contradicts the
assumption that f (j) − e ∈ [−δB, δB].

Hence the attack is as follows. On input s signatures σ1, . . . , σs:

1. From each signature, collect the set of vectors {z(j)} for which cj = 0. Set m to
be the size of such set.

2. For each i ∈ [n], compute ai and bi as per Equation (6.1). Output the set of
guesses for e as S = ⊕n

i=1[bi, ai].

3. For each guess1 e ∈ S, check if e ⋆ E ?= EA. If so, output e.

Let Pm,i be probability of m biased vectors leaking the i-th entry of the secret key,
which satisfies the bound:

Pm,i ≥ 1− 2
(

1− 1
2(δ + 1)B + 1

)m
+
(

1− 2
2(δ + 1)B + 1

)m
Hence the probability Pm of m biased vectors leaking the entire secret key satisfies
Pm = Pnm,i. The parameters in this setting are not well suited for approximating the
binomial terms via low-order Taylor approximations. For reference, however, with
parameter set II; P6173 ≈ 0.5. Hence, the attack is expected to recover the secret key in
a small number of signatures. We provide practical results of the attack in the next
section, which account for the key-space reduction of the signing key.

On guessing the correct value of secret scalars By Theorem 12, given m samples
for each entry i ∈ [n], we determine some interval [bi, ai] which contains ei. Fix a row i.
While it might seem intuitive to prioritise values near the mean value of the interval
[bi, ai], we show that given samples f (1)

i , . . . , f (m)
i , the probability that they result from

the distribution [−δB + ei, δB + ei] is uniform for the choice of ei over [bi, ai]. By
construction of Equation (6.1), we have that f (j)

i ∈ [−δB + ai, δB + bi] for all j ∈ [m].
This interval is strictly contained in [−δB + ei, δB + ei] if and only if ei ∈ [bi, ai]. Let
Dei be the uniform distribution on [−δB + ei, δB + ei]. Hence, the event that the

1We note that this final step can be performed in O(
√

S) (rather than O(S)) group action evaluations
by using a meet-in-the-middle/baby-step-giant-step approach.
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n B δ t

Parameter Set I [DG19] 74 5 9472 128
Parameter Set II [DPV19] 74 5 114 337

Figure 6.1: Parameter sets used in [Kim24].

observed samples f (1)
i , . . . , f (m)

i arise the distribution Dei is unique when ei ∈ [bi, ai]
(and cannot occur otherwise). Now, observe that for all ei ∈ [bi, ai], it holds that:

Pr[ei | f (1)
i , . . . , f (m)

i ] = #Events where f (1)
i , . . . , f (m)

i arises from Dei

#Events where f (1)
i , . . . , f (m)

i arises from Dx for some x ∈ [bi, ai]

= #Events where f (1)
i , . . . , f (m)

i arises from Dei

(#Events where f (1)
i , . . . , f (m)

i arises from Dx) · (#x ∈ [bi, ai])

= 1
1 · (ai − bi + 1) .

This implies there is no better way to guess the correct value of ei than to guess
uniformly over the interval [bi, ai], indicating the attack is in a sense, optimal.

On avoiding rejection sampling At a high level, the reason why rejection sampling
after the challenge computation cannot be avoided, is that the distribution of responses
to a fixed challenge bit must be independent of the secret in both cases. By forcing a
bound on either f or f − e prior to knowing which challenge bit is chosen, the signer
introduces a bias in the distribution of the responses. In our case, f − e was rejected if
out of bounds, which induced key dependence to the distributions of responses f for
c = 0, but indeed the same issue would occur for responses f − e to c = 1 if instead the
resampling was performed when f did not satisfy some bound. The signer cannot know
the challenge bits in advance, and hence can only perform rejection of leaky responses
after challenge computation.

6.1.3 Implementation and Benchmarks

We implement the key-recovery attack using a sage script available at https://github.
com/levanin/leakysea-public. On each iteration of the experiment, a random key is
sampled and a fixed number of biased samples are generated. The protocol of [Kim24]
only leaks a biased vector when a challenge bit is 0, which occurs with probability 1

2 .
So we will assume that given s signatures with challenge length t, we may obtain

⌊
st
2
⌋

biased vectors.

https: //github.com/levanin/leakysea-public
https: //github.com/levanin/leakysea-public
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The attack is efficient, and all of our benchmarking was comfortably performed
on a laptop over a lunch break. We provide the results of our attack given a varying
number of signatures on the parameter sets provided by [Kim24] in Figures 6.2 and 6.3,
obtained from the prior works [DPV19, DG19]. Once the key-space has been reduced
to a size 2b, a meet-in-the-middle search strategy can be used to recover the secret key
in time O(2b/2), using techniques described in [DG19].

We note that the parameter set I requires a larger number of signatures to effectively
perform the attack. This parameter set is designed to handle the high failure probability
of the original SeaSign protocol, so ephemeral vectors must be sampled from a much
larger space. Hence, there is a lower chance of receiving “good” vectors which leak
information about the secret key. We remark that it would have be unreasonable
to use these parameters over parameter set II in the first place, since they do not
yield any performance benefits over existing work. In particular, the performance of
the prior work [DPV19] using parameter set II is roughly 10× faster (2, 195 s) than
the performance of [Kim24] running on parameter set I (27, 685.92 s), with claimed
equivalent security levels.
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Figure 6.2: Results of our attack on [Kim24, Parameter Set II]. Results are the mean over 100
random instances. The key-space refers to the bit-length of the size of the set of possible secret
keys (i.e., if the key-space is n bits, then the number of possible secret keys is 2n).
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Figure 6.3: Results of our attack on [Kim24, Parameter Set I]. Results are the mean over 20
random instances.

6.2 Knowledge Soundness Issues in ZKAttest

ZKAttest is a protocol designed in [FLM22]. The authors introduce the scheme as a
way to build both a privacy-preserving ECDSA PoK and a ring signature, which allow
a prover who has access to signing functionality (but not necessarily direct access to the
private key) to prove knowledge of a valid signature for a given commitment to a public
key. Hence, the core primitive in ZKAttest is a non-interactive zero-knowledge proof
of knowledge of a valid ECDSA signature under a committed public key. Additional
properties can be attested, such as proving that the commitment to the public key is a
value on a list of valid public keys, resulting in a ring signature.

Under the hood, ZKAttest builds on top of the scheme given by [AGM18], which
aims to prove the assertion when working in context of proving arithmetic assertions over
elliptic curve groups (since the known techniques for committed discrete logarithm proofs
do not work for this case [CS97, NBMV99], as a group element cannot be naturally
interpreted as a field element). In the subsections below, we briefly explain the schemes
given by [FLM22]. Note that the protocols rely on Figs. 3.1 to 3.3. We point out the
steps that were omitted or missing, which we incorporate for clarity and completeness,
and then discuss misdesigns and attacks to the constructions.
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6.2.1 Proof of Affine Point Addition (ZKAttest.PA):

In order to construct a proof of knowledge of a valid ECDSA signature, ZKAttest first
introduces a proof that, on input consisting of commitments to three points on an
elliptic curve represented in affine coordinates, shows that the sum of the first two
points is equal to the third. The formulae for affine point addition (for short Weierstrass
curves) are stated in Theorem 13 given by [Sil86].

Theorem 13 (Point addition). Let P := (ax, ay), Q := (bx, by) ∈ E(Fq) be points in
affine coordinates, where E is an elliptic curve of short Weierstrass form E : y2 =
x3 + ax+ b for some a, b ∈ Fq. Given that P ≠ ±Q and P,Q are non-identity elements,
the affine point T := (tx, ty) = P +Q is given by:

tx =
(
by − ay
bx − ax

)2

− ax − bx

ty =
(
by − ay
bx − ax

)
(ax − tx)− ay

The above relations given for point addition can be proven by using Σ-protocol
techniques for arithmetic relationships; but, as the point addition formulae is over Fq,
the commitments to the coordinates have to be in a group of order t. However, it is
not generally the case that #E(Fq) = q. [AGM18] solve this problem by rearranging
the point addition formulae so that Σ-protocols for polynomial relationships among
committed values [CM99] and range proofs [Bou00, CCs08, BBB+18] can be used on
the intermediate commitments. The proof is expanded to handle all the cases for point
addition by using OR composition [CDS94].

ZKAttest introduces a more practical approach. They resolve the need for range
proofs by applying the method given by Bröker [BS07] to find elliptic curve groups of
prescribed order q, in order to instantiate Pedersen commitments over the message space
Zq. The method takes Õ(log q)3 steps, and since it need only be run once for parameter
generation, it is practical, contrary to the comments made in [AGM18]. ZKAttest then
prove the relations of Theorem 13 in the protocol below. Note that in the rest of this
section and the following, we will write the group operation on Pedersen commitments
commitments additively, since they are instantiated via elliptic curves.

ZKAttest.PA. Given C1 = Comq(ax), C2 = Comq(ay), C3 = Comq(bx), C4 =
Comq(by), C5 = Comq(tx), C6 = Comq(ty), prove that T = A+B, where A = (ax, ay),
B = (bx, by), T = (tx, ty), (A,B, T ) ∈ E(Fq).
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1. The prover computes (note that the verifier can compute C7 and C9 from the
public values of C1, C2, C3, C4.):

C7 = C3 − C1 = Comq(bx − ax) C8 = Comq((bx − ax)−1),

C9 = C4 − C2 = Comq(by − ay) C10 = Comq

( by − ay
bx − ax

)
,

C11 = Comq

(( by − ay
bx − ax

)2)
C12 = Comq(ax − tx) ,

C13 = Comq

((
by−ay

bx−ax

)
(ax − tx)

)
.

2. The prover engages with the verifier in the following Σ-protocols in parallel
(omitting the prover’s input witness values for brevity):

⋆ Multiplication proofs via Fig. 3.3:

MulProof(C7, C8,Comq(1)), MulProof(C8, C9, C10),
MulProof(C10, C10, C11), MulProof(C10, C12, C13).

⋆ Equality proofs via Fig. 3.2:

EqualityProof(C5, C11 − C1 − C3), EqualityProof(C6, C13 − C2) .

We highlight some corrections we made to this proof:

• We fix several equations which contain typos.

• We emphasise that all “internal” proofs have to be run in parallel, as is standard
in the parallel composition of Σ-protocols. The implementation of ZKAttest
composes them sequentially, which does not yield a sigma protocol and poses
security concerns.

Note that this proof assumes that at least two of the points A,B, T are valid points
on the curve (see Remark 6), and that A ̸= ±B. If the points A,B are randomly
chosen, the probability that A = ±B is 2/|E(Fq)|. If this occurs when ZKAttest.PA
is invoked in ZKAttest.CDL (see Section 6.2.2), the prover can run the entire protocol
again, but technically the protocol is not perfectly complete as is. We stress that in
ZKAttest.CDL, this issue can be resolved without the need for extending the point
addition proof. Nevertheless, the ZKAttest paper (but not in its implementation) does
propose an extension to handle exceptional cases at the cost of efficiency. Note that the
protocol guarantees that ((ax − bx) ̸= 0) by verifying it has an inverse in the first inner
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multiplication proof. This can be extended to the case when ((ax − bx) = 0), which
corresponds to P = ±Q, and is either a case of point doubling or addition to the point at
infinity. theoretically, the authors propose handling of exceptional cases by using AND
and OR composition of Σ protocols: (ax−bx ̸= 0∧t = a+b)∨(ax = bx∧ay = by∧T = 2P )
if represented in affine coordinates. This protocol, which would require a subroutine
for proving the satisfiability of the doubling formulae (which is unspecified), would be
complete provided A ̸= −B, but still does not account for when A = −B, since the
points are represented in affine coordinates and the resulting point at infinity T cannot
be represented in affine coordinates.
Remark 6. Note that in ZKAttest.PA above, and later in Section 6.3.1, it is assumed
that at least two of the prover’s input points (A,B, T ) are indeed valid points on a given
curve E. If at least two points are valid, then following the point formulae, it follows
that the third must be as well. In applications, as the verifier should be convinced of
this fact in outer protocols, this seems to be sufficient.

6.2.2 Proof of Committed Discrete Logarithm (ZKAttest.CDL):

As stated, [AGM18] builds a proof of the equality of a committed value ω and the discrete
logarithm to the public base point the prover of another committed value ωP . Extending
this approach, ZKAttest introduces a ZKAttest.CDL that relies on ZKAttest.PA. For a
given instance (C1, C ′2, C

′
3), the witness is the tuple (ω, r1, r2, r3) such that (x, y) = ωP ,

C1 = Comp(ω, r1), C ′2 = Comq(x, r2) and C ′3 = Comq(y, r3). The protocol can be seen
below, where solid boxes represent the values sent by a party.

ZKAttest.CDL. Given C1 = Comp(ω) = ωP + r1Q, C ′2 = Comq(x) = xP ′ + r2Q′,
C ′3 = Comq(y) = yP ′ + r3Q′, for q equal to the modulus of the base field of E, prove
that S = (x, y) is equal to ωP , where P,Q ∈ E are public elements of prime order p,
and (P ′, Q′) are points in E′ of prime order q.

1. The prover::

⋆ chooses a random α, β1 ∈ Zp, and β2, β3, β4, β5 ∈ Zq,
⋆ sets (γ1, γ2) = αP , and
⋆ sets (u, v) = (α− ω)P

They, then, compute the following values:
a1 = Comp(α) = αP + β1Q,

a2 = Comq(γ1) = γ1P
′ + β2Q

′, a3 = Comq(γ2) = γ2P
′ + β3Q

′,

C ′4 = Comq(u) = uP ′ + β4Q
′, C ′5 = Comq(v) = vP ′ + β5Q

′.
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sending a1, a2, a3, C ′4, C
′
5 , comm′ to the verifier as comm,

where comm′ is for ZKAttest.PA on (C ′2, C ′3, C ′4, C ′5, a2, a3).

2. The verifier:

• chooses a challenge string c = (c0, c1), where c0 is a single random bit ∈ {0, 1}
and c1 ∈ Zq is a challenge for the ZKAttest.PA.

They send c as chall.

3. The prover receives c:

⋆ If c0 = 0, computes z1 = α, z2 = β1, z3 = β2, z4 = β3.
Sends the tuple (z1, z2, z3, z4) as resp.

⋆ If c0 = 1, computes z1 = α−ω, z2 = β1− r1, z3 = β4 , z4 = β5 . Then, they
compute the response for ZKAttest.PA:

– Given T = z1P = (u, v),
– Compute resp′ with chall′ = c1. which verifies that T = (γ1, γ2)−(x, y)

(T = αP − S).

Sends the tuple (z1, z2, z3, z4 , resp′ ) as resp.

4. Upon receiving resp, the verifier performs the following:

⋆ If c0 = 0, computes (t1, t2) = z1P . Then, verifies that a1
?= z1P + z2Q,

a2
?= Comq(t1, z3) and a3

?= Comq(t2, z4).

⋆ If c0 = 1, computes (t1, t2) = z1P . Then, verifies that a1
?= z1P + z2Q+ C1,

that C ′4
?= Comq(t1, z3) and C ′5

?= Comq(t2, z4) , and sequentially verifies
the point addition proof π = (comm′, c1, resp′).

It is worth noting that, as pointed out by ZKAttest, the proof from [AGM18] fails
to verify C1, the commitment to the secret value ω. ZKAttest presents the corrected
version of this proof with this verification. But even with this correction, the proof does
not achieve special soundness. In short, this is due to the non-standard approach used
in the AND-composition of sigma protocols.

Below, we discuss the issues with ZKAttest’s proof of security for this PoK. We
note that the PoK is indicated to be a Σ-protocol and it is specified (by the number of
repetitions) to have a knowledge error of 1

2 , and perfect HVZK. We explore the failures
of the properties that ZKAttest.CDL should provide.
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Completeness. We remark that the protocol ZKAttest.CDL does not satisfy perfect
completeness. If α ∈ {0, ω, 2ω}, then the inner ZKAttest.PA will fail, since it does not
handle point doubling, inverse addition (without its extension), and addition by the
identity. This failure, in turn, means that the outer protocol will fail, and we note that
these exceptional cases occur with probability 3

p . A solution to this completeness issue
would be to have an honest prover sample from Zp\{0, ω, 2ω}. As a trade-off, doing
so leads to a protocol that is statistical honest verifier zero-knowledge (with negl(p)
statistical closeness between real and simulated transcripts).

Special Honest Verifier Zero-Knowledge. The proof of SHVZK provided in the
final version of ZKAttest is missing details, but it can be shown that their protocol
satisfies statistical SHVZK, as they state, using a simulator similar to the one given in
the proof of Theorem 15.

Special Soundness. The proof of special soundness in ZKAttest is flawed due to
inherent misdesign. First, note that in the original protocol specification and imple-
mentation the prover does not construct the commitment phase for the point addition
protocol until after the challenge has been received2, and their implementation computes
challenges for the subroutines of the point addition proof on the fly. Sending a challenge
before the commitment phase leads to a trivial attack where one can forge a valid point
addition proof in the same way the HVZK simulator for ZKAttest.PA behaves. In their
published version, they correctly include commitment phase for ZKAttest.PA in the first
round, but this issue is present in their open source implementation at the time of
publication.

The authors of ZKAttest claim the protocol is 3-special-sound, and construct an
extractor the extractor which takes as input three transcripts, (commi, challi, respi)i∈[3],
where chall1 = (0, a), chall2 = (1, b), chall3 = (1, c) with b ≠ c and a, b, c ∈ Zq. Such
an accepting transcript would allow for the extraction of the witness since:

• Given that ZKAttest.PA is 2-special sound, the extractor can invoke the extractor
of this internal proof with transcripts for the challenges b, c. This would yield
x, y, r2, r3 as output.

• the extractor may take resp1 = (z1, z2, z3, z4) and resp2 = (z′1, z′2, z′3, z′4, π), and
deduce ω = z1 − z′1 and r1 = z2 − z′2.

We note that for this specific input, the witness extracted above is valid. For further
justification, see the proof of the fixed protocol in Section 6.3.2. However, the extractor

2This is likely also the case in [AGM18], however the specification of the protocol is not sufficiently
detailed.
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is still flawed. In particular, there is no way to extract the witness given the following
cases with these transcript triples (with a, b, c ∈ Zq):

1. (commi, challi, respi)i∈[3] where chall1 = (0, a), chall2 = (0, b), chall3 = (1, c)
for a ≠ b. We explain this extractor fault first since it is the easiest to correct. In
this case, the extractor may recover the values ω, x, y, r1, but not the randomness
r2, r3. In particular, if we modify the protocol to run ZKAttest.PA independently
of c0, such that the prover engages in it for both c0 ∈ {0, 1}, then, this case can
yield a valid witness extraction.

2. (commi, challi, respi)i∈[3] where chall1 = (1, a), chall2 = (1, b), chall3 = (1, c)
for a ≠ b ≠ c. In this case, the extractor may recover part of the witness by
invoking the extractor of ZKAttest.PA, but the extractor cannot recover ω, only
the openings of C ′2, C ′3. There is no clear solution that allows the extractor to
recover ω in this setting.

3. (commi, challi, respi)i∈[3] where chall1 = (0, a), chall2 = (0, b), chall3 = (0, c)
for a ̸= b ̸= c. In this case, it follows that the extractor can learn nothing about
the witness, since resp1 = resp2 = resp3. If we perform the same modification
to the proof as in the first case, we still remain with the same issue as in the
second case, where it is not possible to extract ω.

Note that the definition of 3-special soundness requires the extractor to succeed in
extracting the witness for any 3 accepting transcripts. Therefore, the scheme is not
3-special sound. Furthermore, the claim that the protocol above has soundness error
1
2 is left unjustified. Recall that an n-special sound protocol of challenge space C has
knowledge error n−1

|C| . If the scheme was 3-special sound, it would have knowledge error
2
2q (since C = Z2 × Zq), which is unrealistic for this construction.

6.2.3 A Practical Attack on ZKAttest’s Implementation

In addition to the above concerns, the authors of ZKAttest implemented the non-
interactive protocol with the Fiat-Shamir transform applied on 128 repetitions. However,
as an efficiency measure (as stated in Section 8 of their paper), the verification is only
performed on a random subset of 20 of the repetitions. This ad-hoc choice reduces the
probability of a forged proof being accepted to at least 2−20 (we note this bound is not
tight due to the soundness issues above), but may also allow for a further reduction to
security. Note that:

A malicious prover may construct the commitment phase for c0 = 0 in the same
fashion as the HVZK simulator, S, for the 128 repetitions, and compute the resultant
challenge, which is a hash of the concatenation of these commitments. Then, they
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arbitrarily select the transcript of a single repetition. They will replace the commitment
to C ′4 in this repetition in order to change the output of the resulting challenge hash.
This can be done as this commitment is never opened for the verifier and should be
uniformly distributed in the point-set of E′(Fq′). For i steps, the malicious prover sets
C ′4 to a random point3 in E′(Fq′) until the resultant hash yields a challenge string which
contains at least m challenges which have c0 = 0. Call these the ‘good’ challenges.
For the ‘good’ challenges, they complete their proofs as in the simulator, and for ‘bad’
challenges they output uniformly random values as response.

For m = 115, the probability that a verifier chooses repetitions which have ‘good’
challenges, and accepts the forged proof, is roughly 2%. We make some heuristic
assumptions as to the practicality of this attack. The expected number of attempts to
find a hash which has at least 115 zeroes is i ≈ 270. This takes 270 hash computations.
Now, assuming each increment’s hash only requires a single SHA-256 execution and
basing the cost of SHA-256 computations on the revenue of Bitcoin mining4, the
approximate cost of the attack is 1500 USD.

Even with the counter-measure of rate-limiting, this “cheap” attack is sufficiently
practical if launched in a distributed fashion. Alongside the other issues, the authors of
ZKAttest have been made aware and acknowledged this attack.

6.3 Sound Proofs of Knowledge: CDLS

In the following sections, we consider several solutions to the issues faced with the flawed
security proof of ZKAttest’s ZKAttest.CDL for proving knowledge of an elliptic curve
discrete logarithm. Recall that in our context, we are interested in protocols which
operate in the elliptic curve setting, where [NBMV99] does not apply.

In Section 6.3.1, we propose an optimised Σ-protocol for proving that a commit-
ment to an elliptic curve point is the sum of two others, which we call CDLS.PA. In
Section 6.3.2, we propose a Σ-protocol with knowledge error 1

2 , for a proof of committed
discrete logarithm, which we call CDLS.CDL, or just CDLS if the context is implicit.
This can be used instead of ZKAttest to construct a secure NIZKPoK of a valid ECDSA
signature verification under a committed public key. Then, in the same fashion as
ZKAttest.CDL, the NIZKPoK can be composed with a Σ-protocol for proving set mem-
bership of a committed key in order to construct a ring signature using the generic
construction of [GK15].

3Using the common compressed representation for elliptic curve points, which is the x-coordinate
along with a parity bit, one does not need to evaluate the curve equation each time.

4See https://charts.woobull.com/bitcoin-hash-price/, which as of 2023 places the value of
1012 SHA-256 hashes at approximately 10−6 USD, assuming modern ASICs can be set up to handle
arbitrary fixed length input.

https://charts.woobull.com/bitcoin-hash-price/
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6.3.1 Proof of Valid Point Addition (CDLS.PA)

A key insight that yields optimisation beyond [CM99, FLM22, AGM18], as discussed in
Section 3.5, is that only multiplication and a small number of opening proofs are necessary
in the process of proving a polynomial relation. In particular, linear combinations of
commitments can be obtained without any interaction from the prover. As an example,
consider a prover who wishes to convince the verifier that taking the product of the
opening of two commitments X = comm(x), Y = comm(y) is a linear combination of n
other committed values, such that for Zi = comm(zi), i ∈ [n],

xy =
∑
i∈[n]

aizi

In this example, the prover may verify the relationship holds by having verifier compute
T = ∏

i∈[n] Z
ai
i , and engaging them with MulProof(X,Y, T ). This holds since T is a

valid commitment for the linear combination. The opening proofs are needed to allow
an extractor to recover the openings for the individual commitments given an opening
for the linear combination.

CDLS.PA. Given C1 = Comq(ax), C2 = Comq(ay), C3 = Comq(bx), C4 = Comq(by),
C5 = Comq(tx), C6 = Comq(ty), prove that T = A+B, where A = (ax, ay), B = (bx, by),
T = (tx, ty), (A,B, T ) ∈ E(Fq).

Recall the elliptic curve addition formulae (stated in Theorem 13). We may rearrange
this formula into a system of equations, by adding an additional variable τ (note that
τ = by−ay

bx−ax
):

(bx − ax)τ = by − ay (6.2)
τ2 = ax + bx + tx (6.3)

τ(ax − tx) = ay + ty (6.4)

With this rearrangement, the prover will send the commitment C7 = Comq(τ) along
with the previously defined commitments (C1, . . . , C6) in the commitment phase of
CDLS.PA. The prover engages with the verifier on the instance (C1, . . . , C6). Note
that the verifier can compute the commitment to any linear combination of known
commitments (including C7) due to the linearity of Pedersen commitments. They
perform the following proof interactions in AND-composition (with a common single
challenge in Zq):

• MulProof(C3 − C1, C7, C4 − C2) which verifies that Eq. (6.2) holds,

• MulProof(C7, C7, C1 + C3 + C5) which verifies that Eq. (6.3) holds,
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• MulProof(C7, C1 − C5, C2 + C6), which verifies that Eq. (6.4) holds.

• OpeningProof(C2), which allows the extractor to fully recover a witness.

• NonZeroProof(C3 − C1), which verifies that the bx − ax ̸= 0 (i.e. A ̸= ±B).

We note that without the final non-zero check, the prover may maliciously choose
points A,B such that A = −B. This unconstrains the value of τ , and thus the prover
can choose any tx, ty and τ such that Eqs. (6.3) and (6.4) hold.

As an abuse of notation, we write the elliptic curve group operations above additively,
instead of multiplicatively as in Figs. 3.1 and 3.3. The verifier accepts if all of the above
protocols are accepting.

Theorem 14. The protocol described above is a Σ-protocol for the relation R =

 C1, C2,
C3, C4,
C5, C6

 ,
 ax, ay, bx, by,

tx, ty, r1, r2,
r3, r4, r5, r6


 ∣∣∣∣∣

A+B = T where A ̸= ±B,A,B ̸= O
A = (ax, ay), B = (bx, by), T = (tx, ty)

Each commitment Ci is valid
with randomness ri


assuming the coordinates of at least two of the points correspond to valid points on an
elliptic curve.

Proof. We show the protocol satisfies completeness, honest verifier zero-knowledge and
special-soundness.

Completeness. Due to the correctness of the point addition formulae, the multiplica-
tion proofs will be accepted, since the coordinates of the points must satisfy Eqs. (6.2)
to (6.4), given that A ≠ ±B, and neither points correspond to the identity element. It
is worth highlighting the following two cases: i) if A or B are maliciously chosen such
that A = ±B, the verifier will reject the non-zero check. ii) if A, T are chosen such that
A = ±T , then Eq. (6.4) implies that ay = −ty and hence that A = −T , which is a valid
case (in particular, B = −2A). Since the system of equations is symmetric in the choice
of A and B, the same holds for B = ±T .

Honest Verifier Zero-Knowledge. On input (C1, . . . , C6), and challenge c, the
simulator samples random (a, b) ←$ [q], and sets C ′7 = Comq(a, b), adding it to the
commitment phase of the transcript. The simulator then invokes the simulators for the
three inner multiplication proofs and opening proof where C ′7 is used as input in lieu of
C7. The scheme is perfect HVZK due to the perfect hiding property of the commitment
C ′7, and the perfect HVZK of the underlying inner multiplication and opening proofs.
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2-Special Soundness. The proof is constructed by AND-composing the relations for
the system of equations realising point addition, and hence soundness should hold by
construction. Nevertheless, we will explicitly show how to extract a valid witness given
the extractors for the sub-protocols MulProof,OpeningProof and NonZeroProof.

Recall that, given colliding transcripts for the protocol (comm, chall, resp) and
(comm, chall′, resp′), we have colliding transcripts for each of the 5 AND-composed
protocols (with common challenges chall, chall′). The extractor invokes the sub-
extractor for the three multiplication proofs, respectively. In particular, the extractor
learns the quantities bx − ax, ax + bx + tx and ax − tx. Note that the extractor also
recovers by − ay, ay + ty, r4 − r2 and r2 + r6 from the extractors of the multiplication
proofs.

To recover the x-coordinates and associated randomness, the extractor solves a system
of 3 linear equations in three unknowns and recovers ax, bx, and tx. The randomness
r1, r3, r5, which satisfies the same system of equations, is extracted similarly.

To recover the y-coordinates and associated randomness, the extractor invokes the
sub-extractor for the opening proof of C2, learning ay and r2. Having the y coordinate
and the associated randomness, the extractor can recover by, ty and r4, r6 by substituting
the known values for ay and r2.5

Note that the committed values satisfy the affine point coordinate equations, since
A ≠ ±B by the non-zero check. Further, neither A nor B can correspond to the identity
since they are represented in affine coordinates. Hence, the extractor recovers a valid
witness.

6.3.2 A Fixed Proof of Committed Discrete Logarithm (CDLS.CDL)

Due to the flawed extractor in ZKAttest.CDL, we propose reducing the challenge space
of the inner point addition protocol. The intuition behind this choice, is that the outer
ZKAttest.CDL has knowledge error of at least 1

2 , and thus the inner ZKAttest.PA (which
has knowledge error of ≈ 1

q ) cannot be utilised properly. Moreover, instead of running
the point addition proof conditionally on the response of the verifier, we correctly
compose the protocols via AND-composition. Lastly, we also differentiate between the
base of the discrete logarithm, R, and the parameter the prover used as a parameter in
the pedersen commitment scheme, as these need not necessarily be equal.

5Note that while it is possible to recover the y-coordinates given only the extracted witnesses for the
multiplication proofs: it requires evaluating the x-coordinates through the curve equation and deducing
the correct choices of sign by the known quantities. This does not allow for the recovery of associated
randomness, which is why we include the opening proof for C2.
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CDLS.CDL. Given C1 = Comp(ω) = ωP + r1Q, C ′2 = Comq(x) = xP ′ + r2Q′,
C ′3 = Comq(y) = yP ′ + r3Q′, for q equal to the modulus of the base field of E, prove
that S = (x, y) is equal to ωR, where R,P,Q ∈ E(Fq) are public points of prime order
p; P ′, Q′ ∈ E′(Fq′) are public points of prime order q and (P,Q), (P ′, Q′) instantiate
Comp and Comq respectively.

1. The prover:

(a) chooses a random α, β1 ∈ Zp, and β2, β3, β4, β5 ∈ Zq, such that α /∈ {0, ω, 2ω}.
(b) sets (s, t) = αR (the x and y coordinates of αR),
(c) sets (u, v) = (α− ω)R (the x and y coordinates of ((α− ω)R)),

Then, they compute commitments to α, and to the coordinates of αR and ((α−
ω)R) ((s, t), (u, v), respectively) in the following way:

C4 = Comp(α) = αP + β1Q,

C ′5 = Comq(s) = sP ′ + β2Q
′, C ′6 = Comq(t) = tP ′ + β3Q

′,

C ′7 = Comq(u) = uP ′ + β4Q
′, C ′8 = Comq(v) = vP ′ + β5Q

′.

Then, they send C4, C ′5, C
′
6, C

′
7, C

′
8 to the verifier. In parallel, they send the

commitments for the inner CDLS.PA (as in Section 6.3.1), with binary challenge
space, and input
(C ′2, C ′3, C ′7, C ′8, C ′5, C ′6) that will be used to verify that αR = ωR+ ((α− ω)R).

2. The verifier chooses a random challenge c ∈ {0, 1} and sends it to the prover.

3. The prover receives c and performs the following:

(a) If c = 0, sends (z1, z2, z3, z4) = (α, β1, β2, β3).
(b) If c = 1, sends (z1, z2, z3, z4) = (α− ω, β1 − r1, β4, β5).
(c) They send the response to the inner CDLS.PA with challenge c.

4. Upon response, the verifier performs the following:

(a) If c = 0, computes (s′, t′) = z1R and check that C4
?= Comp(z1, z2), C ′5

?=
Comq(s′, z3) and C ′6

?= Comq(t′, z4).

(b) If c = 1, computes (u′, v′) = z1R and check that C4 − C1
?= Comp(z1, z2),

C ′7
?= Comq(u′, z3) and C ′8

?= Comq(v′, z4).
(c) In parallel, verifies the response for the point addition proof with binary

challenge c.
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Theorem 15. CDLS.CDL is a Σ-protocol for the relation R =

{
((C1, C

′
2, C

′
3), (ω, r1, r2, r3))

∣∣∣∣∣ (x, y) = ωR, C1 = Comp(ω, r1),
C ′2 = Comq(x, r2), C ′3 = Comq(y, r3)

}

assuming ω ≠ 0 and the instantiations of the pedersen commitment schemes Comp,
Comq are perfectly hiding and computationally binding.

Proof. We aim to prove completeness, HVZP and Special-Soundness.

Completeness. If the prover knows the witness w, and samples an α such that
α−ω /∈ {0, ω,−ω}, then the inner CDLS.PA will accept with probability 1, the equalities
in Step 4 will hold, and V will always accept.

Honest Verifier Zero-Knowledge. We construct a simulator S for an accepting
transcript which is statistically indistinguishable from a real accepting transcript. On
input challenge c, the simulator does the following:

• If c = 0, the simulator randomly samples z1 ∈ Zp\{0}, z2 ∈ Zp, z3, z4, u, v ∈ Zq,
and sets (s, t) = z1R. The simulator computes C4 = z1P + z2Q, C ′5 = sP ′ + z3Q′

and C ′6 = tP ′+ z4Q′, and sets C ′7, C ′8 as commitments to the random values (u, v).

• If c = 1, the simulator randomly samples z1 ∈ Zp\{0}, z2 ∈ Zp and z3, z4, s, t ∈ Zq,
and sets (u, v) = z1R. The simulator computes C4 = z1P + z2Q + C1, C ′7 =
uP ′+z3Q′, C ′8 = vP ′+z4Q′ and C ′5, C ′6 as the commitments to the random values
(s, t).

In both cases, the simulator invokes the simulator for CDLS.PA on input (C ′2, C ′3, C ′7, C ′8, C ′5, C ′6)
and the binary challenge c. We show that real and simulated transcripts are statistically
indistinguishable given that the simulator of CDLS.PA outputs a transcript that is
perfectly indistinguishable from a real transcript. Observe that if c = 0 (resp. c = 1), z1
in the real transcript is a uniformly random value in Zp\{0, ω, 2ω} (resp. Zp\{0,−ω, ω})
and z1 in the simulated transcript is a uniformly random value in Zp\{0}. Call the real
sampling distribution Xq and the simulated sampling distribution Yq (resp. Y ′q ). Note
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that the statistical distance:

∆(Xq, Yq) = 1
2

∑
x∈Zq\{0}

|Pr[Xq = x]− Pr[Yq = x]|

= 1
2

(
2
∣∣0− 1

q − 1
∣∣+ ∑

x∈Zq\{0,ω,2ω}

∣∣ 1
q − 3 −

1
q − 1

∣∣)

= 1
q − 1 + 1

q − 1

= 2
q − 1 (= ∆(Xq, Y

′
q ) by a similar argument)

is statistically indistinguishable, since we require that q = exp(ω), which is negligible in
ω. Furthermore, both in the real and simulated proofs, z2, z3, z4 is uniformly random
in their respective domains (z2 ∈ Zp and z3, z4 ∈ Zq). If c = 0 (resp c = 1), the
verification equations uniquely determine C4, C ′5, C

′
6 (resp. C4, C ′7, C

′
8) conditioned on

(z1, z2, z3, z4, C1) and that the remaining commitments are to uniformly random inputs
in Zq. Since the commitment scheme is perfectly hiding, the commitments in the real
and simulated transcripts are perfectly indistinguishable. Hence, the real and simulated
transcripts are statistically indistinguishable with statistical distance 2

q−1 .

2-Special Soundness. Given two accepting transcripts for the protocol for challenges
c = 0 and c′ = 1, the extractor invokes the extractor for the sub-protocol CDLS.PA,
which renders r2, r3 as openings to the commitments C ′2, C ′3.

Let (z1, z2, z3, z4), (z′1, z′2, z′3, z′4) be the responses for c and c′, respectively. By
the verification equations, we know that C ′5, C ′6 and C ′7, C

′
8 are valid commitments

to the coordinates of points z1P and z′1P , respectively. Furthermore, since both the
transcripts are accepting, CDLS.PA must correspond to a valid instance, and thus
we know that the commitments to the coordinates of ωR, z1R and z′1R must satisfy
the equation ωR + z′1R = z1R. Lastly, we know by the verification equations, that
C4 − C1 = Comp(z′1, z′2) and C4 = Comp(z1, z2), and hence we can recover the opening
to C1 as ω = z1 − z′1, and r1 = z2 − z′2. Hence, the extractor recovers ω, r1, r2, r3. By
the point addition proof, and the consistency of the commitments of z1 = α, z′1 = α−ω,
we must have that for (x, y) = (z1− z′1)P , C ′2 = Comq(x, r2) and C ′3 = Comq(y, r3).

Remark 7. Constructing a 5-round protocol was considered, where in the first round,
the prover would open one of the points and verify the consistency of the point multi-
plication commitments. In the second, the prover would run the point addition protocol
(conditional on the first challenge being 1). We believe such an interactive protocol
would be secure, with the techniques described in [AFK22]. However, in the analysis
of [AFK22], the authors claim knowledge error loss when the Fiat-Shamir transform is
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applied to parallel repetitions of a multi-round protocol. In this case, the security loss
would be quadratic in the number of random oracle queries of an attacker. Since the 5
round protocol would offer very few benefits if provably secure as a (2, q)-special-sound
protocol, with expected proof lengths roughly 1

3 shorter than the protocol above in the
best case, we opt to remain in the more flexible and secure setting of 3-round protocols.

6.3.2.1 Transforming to Non-Interactive Zero-Knowledge Proof of Know-
ledge

To boost the soundness of CDLS.CDL, we run λ parallel repetitions, and apply6 the
Fiat-Shamir transform [FS87] to obtain a NIZKPoK with knowledge error of 2−λ. There
is still a healthy margin for the statistical zero-knowledge parameter. Given λ repetitions,
a real and simulated transcript can be distinguished by an unbounded distinguisher
with advantage at most 2λ

22λ−1 ≤ 2−λ (for λ ≥ 3).
Let the commitments for Zq (resp. Zp) correspond to points on an elliptic curve E′

(resp E) defined over a field of q′ (resp. q) elements. Assume7 log2 p ≈ log2 q ≈ log2 q
′ ≈

2λ. Then, concretely for λ = 128, and operating over fields and elliptic curves of order
2λ, the prover must perform 4096 point multiplications, the verifier must perform 2816
point multiplications, and proof size is roughly 151 kB.

6.4 Weak Zero-knowledge in the CROSS Identification
Scheme

CROSS [BBB+24] is a candidate submitted to the NIST additional digital signatures
competition. The CROSS protocol has been selected as a round 2 candidate and is
thus under more scrutiny by the cryptographic community. This is particularly the
case for CROSS, which has recently been attacked in [BLP+25], leading the authors to
update their parameters to account for the loss in bit-security. In this note, we show
that the identification protocol which the CROSS signature is based on does not satisfy
their stated definition of honest verifier zero-knowledge. In particular, we show that (a)
the distributions of real and simulated transcripts are not statistically close, and (b)
given access to the witness, it is possible to distinguish between the real and simulated
transcripts with overwhelming advantage.

6The Fiat-Shamir transformation should be implemented in the standard manner, such as includ-
ing all public parameters in the challenge oracle query, in order to prevent any weak Fiat-Shamir
attacks [DMWG23].

7This is a reasonable assumption, since common parameters, such as the ones for secp256k1,
implement fields of bit length equal to the elliptic curve group order, and Bröker’s algorithm heuristically
returns an elliptic curve whose order and base field are the same bit length.
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In short, the problem present in CROSS-ID is that the commitments sent to the
verifier are not hiding. Generally, a hash based commitment needs fresh, independent
randomness in order to be hiding. We believe this flaw is due to the extreme optimisations
of CROSS, in an attempt to minimise their signature sizes.

It is unclear what relevance this has to the security of the resulting signature scheme,
when the Fiat-Shamir transform has been applied. However, this is particularly relevant
to the security of fully-anonymous ring signatures constructed via generic transformation
of identification protocols, as was seen in the case of SQISign [BLL24].

Note: We do not include the protocol description of ΠCROSS-ID, which is available in
the CROSS security document [BBB+25]. The relevant content is presented in Section
4.2 and Figure 4. Hence, except for the definitions of zero-knowledge, we will follow all
notation and definitions that are present in the document.

Variants of Honest Verifier Zero Knowledge We consider the various notions
of honest verifier zero-knowledge in the context of 5-round identification protocols,
which are extended from the classic definitions of 3-round sigma protocols. Below is the
definition present in the v2.0 security document of CROSS, retrieved from [BBB+25]:

Definition 17 (Honest Verifier Zero-Knowledge). Let Π = (P,V) be an interactive proof
system for a hard relation R ⊆ X × Y . We say that Π is honest-verifier zero-knowledge
if there exists a probabilistic polynomial time algorithm S, called the simulator, such
that the following two distribution ensembles are indistinguishable:

{(x,w, ⟨P(x,w),V(x)⟩) | (x,w)←$R} and {(x,w,S(x)) | (x,w)←$R}

where ⟨P(x,w),V(x)⟩ denotes the transcript of an honest interaction between a prover
and the verifier with their respective inputs.

There is some ambiguity in the definition. It is unclear what the authors mean
by indistinguishability. This may be interpreted as perfectly indistinguishable, the
distributions are identical; statistically indistinguishable, they differ by some negligible
statistical distance; or computationally indistinguishable, a PPT distinguisher cannot
distinguish the distributions with non-negligible advantage. In the security proof for
zero-knowledge, they claim that certain values in the simulated transcript follow the
same statistical distribution as those in real transcripts, but typically the witness is only
included in the distribution given to the distinguisher in the setting of computational
zero-knowledge. Unfortunately, we show that the CROSS protocol can only satisfy the
variant below (in the ROM):

Definition 18 (Weak Computational Honest Verifier Zero-knowledge). Given a random
oracle O, let Π = (PO,VO) be interactive proof system for a hard relation R ⊆ X × Y .
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We say that Π is weak computational honest-verifier zero-knowledge if there exists a
probabilistic polynomial time algorithm SO, called the simulator, such that for any
λ ∈ N, and any PPT distinguisher D that makes polynomially many queries to the
random oracle O, the following quantity is negligible in λ:∣∣∣∣Pr[DO(x, ⟨PO(x,w),VO(x)⟩) = 1 | (x,w)←$R]−Pr[DO(x,SO(x)) = 1 | (x,w)←$R]

∣∣∣∣
We denote the above quantity as the advantage of D.

In particular, we first provide a distinguisher for ΠCROSS-ID which shows that it does
not satisfy Definition 17 (i.e. it is not strong honest verifier zero-knowledge). Then, we
show that ΠCROSS-ID is not statistically zero-knowledge, since for a fixed instance-witness
pair, the distributions of real and simulated transcripts are not statistically close.

6.4.1 An Efficient Distinguisher Given Access to the Witness

We define a distinguisher D for the distributions from Definition 17 of ΠCROSS-ID as
follows. On input:

• instance (G,H, s) where G ⊆ En, H ∈ F(n−k)×n
p , s ∈ Fn−kp ,

• witness e ∈ G such that s = eH⊤,

• and transcript T = (cmt0, cmt1, chall1, digesty, chall2, resp)

The distinguisher, given oracle access to O = Hash(·), performs the following steps:

1. If chall2 = 0, parse resp as Seed and perform the following:

(a) Compute (e′,u′)← CSPRNG(Seed) and hence with knowledge of e, obtain
v = e ⋆ (e′)−1, and u = v ⋆ u′. Lastly, compute s′ = uH⊤.

(b) If cmt0 = Hash(s′|v), output 1. Otherwise, output 0.

2. Otherwise, chall2 = 1, parse resp as (y,v) and perform the following:

(a) With knowledge of e, compute e′ = e ⋆v−1 and solve for u′ = y−chall1 ⋆ e′.
(b) If cmt1 = Hash(u′|v), output 1. Otherwise, output 0.

The only time the distinguisher will output 1 for a simulated transcript is when
the simulator chooses a random bit string that coincides with the commitment for an
honest execution of the protocol with the same challenges and responses. This occurs
with probability 2−2λ. Hence the distinguisher has overwhelming advantage 1− 2−2λ in
distinguishing the distributions in Definition 17.
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6.4.2 Statistical Distance Between Real and Simulated Transcripts

Recall the statistical distance (or total variable distance) between two distributions (or
random variables) X and Y is defined as:

∆(X,Y ) = 1
2
∑
x

|Pr[X = x]− Pr[Y = x]|

The distributions are said to be statistically indistinguishable for a parameter λ ∈ N
if ∆(X,Y ) ≤ negl(λ).

We rely on the following classical results from [Sho05, Thm 8.32, Thm 8.31].
Lemma 1. If S and T are finite sets, and X and Y are random variables taking values
in S, and f : S → T is a function, then ∆(X,Y ) ≥ ∆(f(X), f(Y )).
Lemma 2. Let X and Y be random variables taking the values in a set S. For every
S′ ⊆ S, we have ∆(X,Y ) ≥ |Pr[X ∈ S′]− Pr[Y ∈ S′]|.

Given (PO, V O) = ΠCROSS-ID, let us consider the distribution of transcripts for a
fixed (x,w) ∈ RCROSS-ID and instantiation of a random oracle O. Let

Treal = {⟨PO(x,w), V O(x)⟩} and Tsim = {SO(x)}

be the random variables associated to real and simulated transcripts respectively over
the set of valid transcripts Ω. From now on, parse elements of the set T ∈ Ω as

(cmt0, cmt1, chall1, digesty, chall2, resp).

First, we observe that the real transcripts use a λ-bit seed, which determines the
resulting values for cmt0 and cmt1. However, the digests for the random oracle are
length 2λ. Hence there are at least 22λ− 2λ possible values for cmt0 and cmt1 ∈ {0, 1}2λ
which are never used in the real transcripts, but are in the unopened commitment of
the simulated transcript. Consider the function f : Ω→ {0, 1} × {0, 1}2λ which sends:

(cmt0, cmt1, chall1, digesty, chall2, resp) 7→ (chall2, cmt1−chall2)

That is, the distribution of chall2 and the (1− chall2)-th commitment, which remains
unopened. Let T ′real := f(Treal) and T ′sim := f(Tsim), and observe that the latter
distribution is uniformly distributed.

Define the function g0,e : {0, 1}λ → {0, 1}2λ that takes as input a λ-bit seed, and
outputs the resulting commitment cmt0 in the real transcript for a given witness e.
Similarly, define g1,e to output the commitment cmt1 in the real transcript for a given
seed and e. Now, let

S0 = {0} × {0, 1}2λ \ {0} × g1,e({0, 1}λ),
and S1 = {1} × {0, 1}2λ \ {1} × g0,e({0, 1}λ)
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Which is precisely the set of values which arise in T ′sim and not in T ′real. We note
that

|S0| ≥ 22λ − 2λ and |S1| ≥ 22λ − 2λ. (6.5)

Equality is the best case, where gi,e is injective for both i ∈ {0, 1}. Hence, we have:

∆(Treal, Tsim) ≥ ∆(T ′real, T ′sim) (By Lemma 1)
≥ |Pr[T ′real ∈ S0 ∪ S1]− Pr[T ′sim ∈ S0 ∪ S1]| (By Lemma 2)
= |0− Pr[T ′sim ∈ S0 ∪ S1]|
= Pr[T ′sim ∈ S0 ∪ S1]

= |S0 ∪ S1|
|{0, 1} × {0, 1}2λ|

≥ 22λ − 2λ + 22λ − 2λ
2 · 22λ (By Equation (6.5))

= 1− 2−2λ−1

Hence we have that real and simulated protocol transcripts for a fixed instance
(x,w) ∈ RCROSS-ID are far from being statistically indistinguishable, with statistical
distance at least 1− 2−2λ−1 = 1− negl(λ).
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José Felipe Voloch, Charlotte Weitkämper, and Lukas Zobernig. Failing to
hash into supersingular isogeny graphs. Cryptology ePrint Archive, Report
2022/518, 2022.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-
solomon interactive oracle proofs of proximity. In Ioannis Chatzigiannakis,
Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, ICALP
2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl, July 2018.

[BCC+23] Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo, Tako Boris
Fouotsa, Guido Maria Lido, Travis Morrison, Lorenz Panny, Sikhar Pat-
ranabis, and Benjamin Wesolowski. Supersingular curves you can trust. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part II,
volume 14005 of LNCS, pages 405–437. Springer, Cham, April 2023.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on Security
and Privacy, pages 459–474. IEEE Computer Society Press, May 2014.

[BCG+17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad
Hajiabadi, and Sune K. Jakobsen. Linear-time zero-knowledge proofs for
arithmetic circuit satisfiability. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 336–365.
Springer, Cham, December 2017.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Cham, May 2019.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive
oracle proofs. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,



106 BIBLIOGRAPHY

Part II, volume 9986 of LNCS, pages 31–60. Springer, Berlin, Heidelberg,
October / November 2016.

[BD21] Jeffrey Burdges and Luca De Feo. Delay encryption. In Anne Canteaut and
François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume
12696 of LNCS, pages 302–326. Springer, Cham, October 2021.

[BDD+24] Andrea Basso, Pierrick Dartois, Luca De Feo, Antonin Leroux, Lu-
ciano Maino, Giacomo Pope, Damien Robert, and Benjamin Wesolowski.
SQIsign2D-West - the fast, the small, and the safer. In Kai-Min Chung and
Yu Sasaki, editors, ASIACRYPT 2024, Part III, volume 15486 of LNCS,
pages 339–370. Springer, Singapore, December 2024.

[BDE+22] Maxime Buser, Rafael Dowsley, Muhammed F. Esgin, Shabnam Kasra
Kermanshahi, Veronika Kuchta, Joseph K. Liu, Raphaël C.-W. Phan, and
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