Lifted Isogeny Graphs

Honours Project

Shai Levin
Supervisor: Felipe Voloch
28 May 2021

Elliptic Curves and Isogenies

* Elliptic Curves. $y^{2}=x^{3}+a x+b$ Algebraic and geometric structure. Set of solutions over a field form a group.
* Morphisms of elliptic curves are called isogenies. Isogenies preserve group \& geometric structure. Isogenies have a notion of degree (usually \# kernel).
* These objects intersect algebraic geometry and number theory.
* But also combinatorics (as we shall see)!

Figure 1: Group operation on $y^{2}=x^{3}-4 x+7$

Isogeny Graphs

* Pick your favourite field K, and prime ℓ.
* Define a graph: vertices are all the elliptic curves over K, edges are isogenies between them of fixed degree ℓ.
* This graph has rich structure. Two classes of connected components.
* One supersingular component. The rest are called ordinary and form 'volcanoes' - finite if K is finite.
* Supersingular component of particular interest to cryptography. Finding paths on this graph is hard. Promising cryptographic primitive.

Figure 2: Supersingular component $K=\mathbb{F}_{97^{2}}, \ell=2$

Figure 3: A volcano graph

Adding 「 Structure

* Same set up, take elliptic curves of a given component, and define a new graph. Fix another prime m.
* Vertex - (E, G): Elliptic curve E. From group structure of E a cyclic subgroup G of order m.
* Edge - $\left(\left(E_{1}, G_{1}\right),\left(E_{2}, G_{2}\right)\right)$: If isogeny $\phi: E_{1} \rightarrow E_{2}$ such that $\phi\left(G_{1}\right)=G_{2}$.
* Forms covering graphs or lifts of the original isogeny graphs. 'Locally isomorphic' to base graph. Analogous to topological covering spaces.
* Volcanoes: Using this combinatorial result to prove that this 'lift' structure on a volcano yields a disjoint union of volcanoes.

Figure 4: 「 structure applied to a supersingular component

\}

Figure 5: Top: an ordinary component, Bottom: corresponding Γ structure graph

