
Lifted Isogeny Graphs Honours Project

Shai Levin Supervisor: Felipe Voloch 28 May 2021

Elliptic Curves and Isogenies

Elliptic Curves. y² = x³ + ax + b
Algebraic and geometric structure.
Set of solutions over a field form a group.

- Morphisms of elliptic curves are called isogenies. Isogenies preserve group & geometric structure. Isogenies have a notion of degree (usually # kernel).
- These objects intersect algebraic geometry and number theory.
- But also combinatorics (as we shall see)!

* Pick your favourite field K, and prime ℓ .

- Define a graph: vertices are all the elliptic curves over K, edges are isogenies between them of fixed degree l.
- This graph has rich structure. Two classes of connected components.
- One supersingular component. The rest are called ordinary and form 'volcanoes' - finite if K is finite.
- Supersingular component of particular interest to cryptography. Finding paths on this graph is hard. Promising cryptographic primitive.

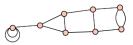


Figure 2: Supersingular component $K = \mathbb{F}_{97}^2$, $\ell = 2$

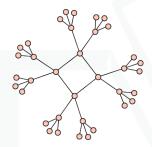
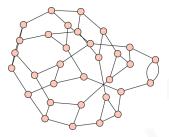
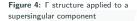




Figure 3: A volcano graph

Adding $\[Gamma]$ Structure

- Same set up, take elliptic curves of a given component, and define a new graph. Fix another prime m.
- Vertex (E, G): Elliptic curve E. From group structure of E a cyclic subgroup G of order m.
- * Edge $((E_1, G_1), (E_2, G_2))$: If isogeny $\phi: E_1 \rightarrow E_2$ such that $\phi(G_1) = G_2$.
- Forms covering graphs or lifts of the original isogeny graphs. 'Locally isomorphic' to base graph. Analogous to topological covering spaces.
- Volcanoes: Using this combinatorial result to prove that this 'lift' structure on a volcano yields a disjoint union of volcanoes.

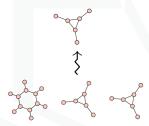


Figure 5: Top: an ordinary component, Bottom: corresponding Γ structure graph