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Expander Graphs
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O
Two Important Properties

On a ’good’ expander graph:

L Path finding is hard when the number of vertices is
(exponentially) large.

L Random walks converge to the uniform distribution.

3/23



O
Some Applications

In Computer Science:

L Efficient error correcting codes
L Fault-tolerant networks
L Cryptographic pseudorandom behaviour:

L Cryptographic hash functions or one way functions.
L pseudorandom functions (?)
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O
Overview

L We want a family of graphs {Gi}
L Choose a graph from this family and a starting vertex.
L Compute a path ’randomly’.

Intuition:

1. When the path is long enough, the end point could be
anywhere (pseudorandom).

2. Given starting and ending vertices, finding a path is hard.

Question
What does a suitable family of graphs look like?
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O
Adjacency Matrix, Regular graphs

An adjacency matrix A of a graph on n vertices is an n × n matrix
where each ai ,j = # edges from i-th vertex to j-th vertex.
Example

For G above, A =
[ 0 1 0 2

1 0 2 0
0 2 0 1
2 0 1 0

]
.

L A graph is d-regular if each vertex is adjacent to d others.
L We call a d-regular graph on n vertices an [n, d ]-graph.
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O
Graph Spectrum

L If a graph G is undirected, the adjacency matrix A is
symmetric and real =⇒ n eigenvalues.

Definition (Graph Spectrum)
The spectrum of a graph is the set of eigenvalues λ1, ...λn of
adjacency matrix A where:

d ≥ λ1 ≥ λ2 ≥ ... ≥ λn ≥ −d
for d ∈ Z.

Some useful properties of graph spectrum:

L If G is d-regular, then λ1 = d .
L G is bipartite if.f λ1 = −λn.
L G is connected if.f λ1 > λ2.
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O
Algebraic Definition: Spectral Gap

Given an [n, d ]-graph G with spectrum
d = λ1 ≥ λ2 ≥ ... ≥ λn ≥ −d :

L Let λ(G) := max({|λ2|, ..., |λn|}) (usually just λ2).
L d − λ(G) is the spectral gap.
L If non-zero, this graph is called an expander.
L {Gi} is an expander family (increasing in size) if for all Gi ,

d − λ(Gi) meets some fixed lower bound.
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O
Expander Mixing Lemma

Theorem
The number of edges between any two large vertex subsets in a
good expander graph, is close to the average amount of edges
between two vertex subsets in a random [n, d ]-graph.

L Corollary: random walks on the graph converge to uniform
distribution in O(log(n)) steps.
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O
Ramanujan Graphs

Definition (Ramanujan Graphs)
If G is an [n, d ]-graph, then it is Ramanujan if:

d − 2
√

d − 1 ≤ d − λ(G) ≤ d − 2
√

d − 1 + ϵ.

for ϵ > 0 where ϵ → 0 as n → ∞.

L All expander graphs satisfy the upper bound.
L Bigger d − λ(G) term =⇒ better expander.
L Ramanujan graphs are (asymptotically) the best expanders -

but hard to come by.

Problem
Does there exist infinite families of d-regular Ramanujan graphs
for each d ≥ 3?
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O
Constructing Expander Graphs

Two types of construction. Given an infinite family {Gi} of
expander-graphs:

L Weakly Explicit: Gi can be constructed in polynomial time.
(Polynomial in # vertices).

L Strongly Explicit: Given i ∈ N, a vertex v ∈ V (Gi), the
neighbours of v can be computed in polynomial time.
(Polynomial in length of input (i , v)).

11/23



O
Expanders: What we know so far

L Ramanujan graphs are optimal expanders.
L Good expanders are sparse and finding paths on them is ’hard’.
L Can we use them in cryptography?
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O
One Way Functions, Pseudorandom Generators and Pseudo-
random Functions

Let f : X → Y be a function that is efficient to compute.

L f is a one-way function, if given f , some f (x) ∈ Y, it is hard
to compute an x ′ ∈ X such that f (x ′) = f (x).

L f is a pseudorandom function, if f is indistinguishable from a
uniform function when queried. (instantiated with a secret
key)

13/23



O
One Way Function from Expanders

L On a ’good’ [n, d ] expander graph
G . Pick a starting adjacent vertex
pair (v−1, v0).

L Input: string x1x2..xk of alphabet
{0, .., d − 2}.

L for i in {1, ..., k}:
L Set vi to be the xi th vertex

adjacent to vi−1 (not including
vi−2).

L Output: vk . Example: Traversing
f (”01”) on a 3-regular graph
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O
Choosing Our ’Good’ Graph

Ramanujan graph G is ’good’ if:

L strongly explicit,
L exponentially large vertex set,
L little symmetry,
L hard to find cycles on.

Proposals:

L LPS graphs: Cayley graph of PSL(2, p). Pre-image
resistance broken by Petit 2008.

L Supersingular Isogeny Graphs: still (believed) secure!
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O
Elliptic Curves and Isogenies

L Elliptic curves.
y2 = x3 + ax + b Algebraic
and geometric structure. Set
of solutions over a field form
a group.

L Maps between elliptic curves
are called isogenies.
Isogenies preserve group &
geometric structure.

L Degree of an isogeny is the
size of it’s kernel (as a group
homomorphism). Figure 1: Group operation on

y2 = x3 − 4x + 7
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O
Supersingular ℓ-Isogeny graphs

L An elliptic curve is ordinary or
supersingular.

L Gℓ(p): Supersingular elliptic curves
defined over Fp2 (up to isomorphism)
form a graph with degree ℓ isogenies as
edges.

L The graph is ’good’. Ramanujan,
⌊ p

12
⌋

vertices, ℓ + 1 regular (for prime ℓ) and
strongly explicit.

L Vertices are usually represented by the
j-invariant, which corresponds to a single
field element in Fp2 (1-1 correspondence)

Figure 2: Supersingular
isogeny graph G2(97)
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O
Computational Assumption: Isogeny Paths

Problem (IsoPath)
Given j-invariants of two elliptic curves defined over Gℓ(p), find a
path between them.

L Closely related to the strong expansion properties of the
graph.

L Cryptanalysis: best quantum attacks are still exponential
time. ∼ Õ(p 1

3 )
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O
The CGL One Way Function

The CGL function below, where G2(p) is a 3-regular family of
expanders for increasing p. For security, p ≫ 2256.

Algorithm 1 h(m, j0, j−1, Sqr(.))
Input: An n bit binary string m = mn−1||...||m0, adjacent vertices j0, j−1 in G2(p), and

a deterministic square root algorithm Sqr for Fp2 .
Output: Vertex jn corresponding to the end point of the walk given by m.

1: for i in 0, ..., n − 1 do
2: si ← +1 if mi = 1, −1 if mi = 0
3: ai ← −j2

i + 1488ji − 162000
4: bi ← 1488j2

i + 40773375ji + 8748000000
5: Di ← (ai + ji−1)2 − 4(bi + ai ji−1 + j2

i−1)
6: Si ← Sqr(Di )
7: ji+1 ← 2−1(−ai − ji−1 + si Si )
8: end for
9: return jn
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O
An idea: Pseudorandom Function Candidate from CGL

Given G2(p) and a starting vertex v0, Fk(m) is computed as
follows:

1. Walk the graph starting at v0, based on the base-2 encoding
of m, finishing on va

2. Walk the graph again, starting at va based on the base-2
encoding of k, finishing on vb.

v−1 v0 v1 ... va−1 va va+1 ... vb−1 vb

h(k,va,va−1)h(m,v0,v−1)

Question
Why doesn’t this work if you switch the steps around?
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O
Applications of OWFs and PRFs: Signatures

Given a zero-knowledge, non-interactive proof system and
uniformly random secret key sk:

L OWF: pk = OWF (sk) and signature is a proof:
”I know a sk such that OWF (sk) = pk”

with m incorporated into the randomness of the proof.

L PRF: pk = PRFsk(0)), and signature is PRFsk(m) attached
with a proof:

”I know a sk such that I can compute both
PRFsk(m) and PRFsk(0)”.
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O
Our work - generic proof systems

L Efficient Isogeny Proofs Using Generic Techniques - Cong,
Lai, Levin - Submitted to ACNS 2023.

L Apply generic proof systems (Aurora, Ligero, Limbo) to
isogeny paths:

”I know a path between the two elliptic curves”

with message incorporated into the randomness of the proof
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Thank you!
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O
Example: A Strongly Explicit Family of Expanders

Margulis Construction (Discrete Torus Expanders): A family of
8-regular graphs Gi = (Vi , Ei) for i ∈ Z+:

L Vi = Zi × Zi

L An edge from each vertex (x , y) to (x ± y , y), (x , y ± x),
(x ± y + 1, y), (x , y ± x + 1). (arithmetic mod i)

L Gi is a [i2, 8, 5
√

2
8 ] family of expanders where λ(Gi) → 2

√
8 − 1 as

i → ∞.
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O
PRF Reformulated: Vélu Formula Approach

We can reformulate the PRF in a similar way:

L Starting with an Elliptic Curve E over Fp2 where p = 2a ± 1
L Let P0, Q0 be a basis for the torsion subgroup E [2a].
L Define

Fk(m) : K × M → Fp2

(k, m) 7→ E/⟨P0 + [2
a
2 k + m]Q0⟩

L With message and key space M = K = Z2a/2
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