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Two Important Properties

On a 'good’ expander graph:

# Path finding is hard when the number of vertices is
(exponentially) large.

# Random walks converge to the uniform distribution.

3/23



Some Applications

In Computer Science:

# Efficient error correcting codes

# Fault-tolerant networks
# Cryptographic pseudorandom behaviour:

% Cryptographic hash functions or one way functions.
# pseudorandom functions (?)
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# We want a family of graphs {G;}
# Choose a graph from this family and a starting vertex.

# Compute a path 'randomly’.
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1. When the path is long enough, the end point could be
anywhere (pseudorandom).

2. Given starting and ending vertices, finding a path is hard.
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# We want a family of graphs {G;}
# Choose a graph from this family and a starting vertex.
# Compute a path 'randomly’.

Intuition:

1. When the path is long enough, the end point could be
anywhere (pseudorandom).

2. Given starting and ending vertices, finding a path is hard.

Question
What does a suitable family of graphs look like?
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Adjacency Matrix, Regular graphs

An adjacency matrix A of a graph on n vertices is an n X n matrix
where each a;; = # edges from i-th vertex to j-th vertex.

Example

0183
For G above, A = {0201]
2010

A graph is d-regular if each vertex is adjacent to d others.

We call a d-regular graph on n vertices an [n, d]-graph.
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Graph Spectrum

# |f a graph G is undirected, the adjacency matrix A is

symmetric and real = n eigenvalues.

Definition (Graph Spectrum)
The spectrum of a graph is the set of eigenvalues A1, ...\, of
adjacency matrix A where:
d>M2>2X2>.. 2\ > —d
for d € Z.
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Graph Spectrum

# |f a graph G is undirected, the adjacency matrix A is

symmetric and real = n eigenvalues.

Definition (Graph Spectrum)
The spectrum of a graph is the set of eigenvalues A1, ...\, of

adjacency matrix A where:
d>M2>2X2>.. 2\ > —d

for d € Z.

Some useful properties of graph spectrum:

% If G is d-regular, then \; = d.
% G is bipartite if.f Ay = —A\,.
# G is connected if.f \; > \».
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Algebraic Definition: Spectral Gap

Given an [n, d]-graph G with spectrum
d=X\N>X>...> )\, > —d:

,*,

Let A(G) := max({|A\2], .-, |An|}) (usually just A2).
d — \(G) is the spectral gap.

.*‘

,*.

If non-zero, this graph is called an expander.

.*‘

{G;} is an expander family (increasing in size) if for all G;,
d — A(G;) meets some fixed lower bound.
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Expander Mixing Lemma

Theorem

The number of edges between any two large vertex subsets in a
good expander graph, is close to the average amount of edges
between two vertex subsets in a random [n, d]-graph.

# Corollary: random walks on the graph converge to uniform
distribution in O(log(n)) steps.
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Ramanujan Graphs

Definition (Ramanujan Graphs)

If G is an [n, d]-graph, then it is Ramanujan if:
d—2vd—-1<d-\NG)<d—-2vd—1+e.

for e > 0 where e — 0 as n — 0.

All expander graphs satisfy the upper bound.
Bigger d — \(G) term = better expander.
Ramanujan graphs are (asymptotically) the best expanders -

but hard to come by.

Problem

Does there exist infinite families of d-regular Ramanujan graphs
for each d > 37
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Constructing Expander Graphs

Two types of construction. Given an infinite family {G;} of
expander-graphs:

# Weakly Explicit: G; can be constructed in polynomial time.
(Polynomial in # vertices).

# Strongly Explicit: Given i € N, a vertex v € V(G;), the
neighbours of v can be computed in polynomial time.
(Polynomial in length of input (i, v)).
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Expanders: What we know so far

# Ramanujan graphs are optimal expanders.
# Good expanders are sparse and finding paths on them is 'hard".

# Can we use them in cryptography?
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One Way Functions, Pseudorandom Generators and Pseudo-

random Functions

Let f : X — Y be a function that is efficient to compute.
# f is a one-way function, if given f, some f(x) € Y, it is hard
to compute an x’ € X such that f(x) = f(x).

# f is a pseudorandom function, if f is indistinguishable from a
uniform function when queried. (instantiated with a secret

key)
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One Way Function from Expanders

# On a 'good’ [n, d] expander graph
G. Pick a starting adjacent vertex

pair (v_1, v).
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One Way Function from Expanders

# On a 'good’ [n, d] expander graph
G. Pick a starting adjacent vertex
pair (v_1, v).

# Input: string x3xo..x, of alphabet
{0,..,d — 2}.
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One Way Function from Expanders

# On a 'good’ [n, d] expander graph
G. Pick a starting adjacent vertex

pair (v_1, v).

# Input: string x3xo..x, of alphabet 0 /
{0,..,d — 2}. 7 1

0
% for i in {1,...,k}:
# Set v; to be the x;th vertex
adjacent to v;_1 (not including

Vi_2).

&

14/23



One Way Function from Expanders

On a 'good’ [n, d] expander graph

G. Pick a starting adjacent vertex

pair (v_1, v).

# Input: string x3xo..x, of alphabet 0 /
{0,..,d — 2}. 7 1

0
for iin {1,....,k}:

# Set v; to be the x;jth vertex

v
adjacent to v;_1 (not including -1

Vi_2).

% Output: vg.
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On a 'good’ [n, d] expander graph

G. Pick a starting adjacent vertex 0 /

pair (v_1, v). v{ !

# Input: string x1x2..x, of alphabet /
{0,..,d — 2}. 7 1

% for i in {1,...,k}: ’
# Set v; to be the x;th vertex v
adjacent to v;_1 (not including -1
Via).
# Qutput: vg. Example: Traversing

f("01") on a 3-regular graph
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One Way Function from Expanders

# On a 'good’ [n, d] expander graph ’Vz
G. Pick a starting adjacent vertex 0
pair (v_1, v). v;
# Input: string x3xo..x, of alphabet /
{0,...,d —2}. v !
% for i in {1,...,k}:
# Set v; to be the x;th vertex v
adjacent to v;_1 (not including -1
Via).
# Qutput: vg. Example: Traversing

f("01") on a 3-regular graph
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Choosing Our 'Good’ Graph

Ramanujan graph G is 'good’ if:

# strongly explicit,
# exponentially large vertex set,
# little symmetry,

# hard to find cycles on.
Proposals:

# LPS graphs: Cayley graph of PSL(2,p). Pre-image
resistance broken by Petit 2008.

# Supersingular Isogeny Graphs: still (believed) secure!
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Elliptic Curves and Isogenies

# Elliptic curves.
y? = x3 4 ax + b Algebraic
and geometric structure. Set
of solutions over a field form ’4
a group.
# Maps between elliptic curves
are called isogenies. \p+a
Isogenies preserve group &
geometric structure.

# Degree of an isogeny is the

size of it's kernel (as a group
Figure 1: Group operation on

homomorphism). Vi=s3—ax+7
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Supersingular /-Isogeny graphs

# An elliptic curve is ordinary or

supersingular.

# Gy(p): Supersingular elliptic curves
defined over ¥ > (up to isomorphism)

form a graph with degree ¢ isogenies as
edges. @—‘dj:@

# The graph is 'good’. Ramanujan, |45 ]
vertices, £ + 1 regular (for prime ¢) and Figure 2: Supersingular
. isogeny graph G>(97)
strongly explicit.
% Vertices are usually represented by the
j-invariant, which corresponds to a single

field element in F> (1-1 correspondence)
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Computational Assumption: Isogeny Paths

Problem (IsoPath)
Given j-invariants of two elliptic curves defined over Gy(p), find a

path between them.

% Closely related to the strong expansion properties of the
graph.
# Cryptanalysis: best quantum attacks are still exponential

time. ~ é(p%)
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The CGL One Way Function

The CGL function below, where Gy(p) is a 3-regular family of

expanders for increasing p. For security, p > 22%°.

Algorithm 1 h(m, jo,j_1,Sqr(.))
Input: An n bit binary string m = mp,_1]]...||mo, adjacent vertices jo, j_1 in G2(p), and
a deterministic square root algorithm Sqr for Fp.

Output: Vertex j, corresponding to the end point of the walk given by m.

1: foriin0, ..., n—1do

2 s,-<—+1ifm,-:1,—1ifm,—:0

3: aj + —j? + 1488j; — 162000

4: b; «+ 14882 + 40773375; + 8748000000
5: Di + (ai +ji—1)? — 4(bj + ajji—1 + j? ;)
6 5,’ < Sqr(D,-)

7: Jit1 < 27 (=a; — ji—1+ siSi)
8: end for

9: return j,
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An idea: Pseudorandom Function Candidate from CGL

Given Gu(p) and a starting vertex vg, Fx(m) is computed as
follows:

1. Walk the graph starting at vp, based on the base-2 encoding
of m, finishing on v,

2. Walk the graph again, starting at v, based on the base-2
encoding of k, finishing on v,

h(m,vo,v_1) h(k,Varva_1)

A s
Vo — Vo —— VI —— «o.. — > Va1 ——> Vg — Va4l —— ... — > Vp1 —— Vp

20/23



An idea: Pseudorandom Function Candidate from CGL

Given Gy(p) and a starting vertex vg, Fx(m) is computed as
follows:

1. Walk the graph starting at vp, based on the base-2 encoding
of m, finishing on v,
2. Walk the graph again, starting at v, based on the base-2
encoding of k, finishing on v,
h(m,vo,v_1) h(k,Va,Va1)
Vg —— Vg — V] — . — Va1 = Va — Vafl —F e — Vpl — Vp
Question

Why doesn’t this work if you switch the steps around?
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Applications of OWFs and PRFs: Signatures

Given a zero-knowledge, non-interactive proof system and
uniformly random secret key sk:

# OWF: pk = OWF(sk) and signature is a proof:
"I know a sk such that OWF(sk) = pk”
with m incorporated into the randomness of the proof.
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Applications of OWFs and PRFs: Signatures

Given a zero-knowledge, non-interactive proof system and

uniformly random secret key sk:

# OWF: pk = OWF(sk) and signature is a proof:
"I know a sk such that OWF(sk) = pk”
with m incorporated into the randomness of the proof.
# PRF: pk = PRF¢(0)), and signature is PRF(m) attached

with a proof:
"l know a sk such that | can compute both

PRFy(m) and PRFy(0)".

21/23



Our work - generic proof systems

# Efficient Isogeny Proofs Using Generic Techniques - Cong,
Lai, Levin - Submitted to ACNS 2023.

# Apply generic proof systems (Aurora, Ligero, Limbo) to
isogeny paths:

"l know a path between the two elliptic curves”
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Thank you!
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Example: A Strongly Explicit Family of Expanders

Margulis Construction (Discrete Torus Expanders): A family of
8-regular graphs G; = (V;, E;) for i € Z:
* V, = Z,‘ X Z,‘
# An edge from each vertex (x,y) to (x £ y,y), (x,y £ x),
(x£y+1,y), (x,y £x+1). (arithmetic mod i)
# G is a [i%,8, 2Y2] family of expanders where \(G;) — 2/8 — 1 as
i — o0.
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PRF Reformulated: Vélu Formula Approach

We can reformulate the PRF in a similar way:

# Starting with an Elliptic Curve E over [F > where p =27 +1
# Let Py, Qo be a basis for the torsion subgroup E[27].
# Define
F(m) : K x M — F
(k,m) = E/{Pg + [23 k + m] Qo)
# With message and key space M = K = Z,.>

25/23



