Expander Graphs in Cryptography

Shai Levin
Supervisor: Steven Galbraith
January, 2023
University of Auckland, New Zealand

Expander Graphs

Two Important Properties

On a 'good' expander graph:

* Path finding is hard when the number of vertices is (exponentially) large.
* Random walks converge to the uniform distribution.

Some Applications

In Computer Science:

* Efficient error correcting codes
* Fault-tolerant networks
* Cryptographic pseudorandom behaviour:
* Cryptographic hash functions or one way functions.
* pseudorandom functions (?)

Overview

* We want a family of graphs $\left\{G_{i}\right\}$
* Choose a graph from this family and a starting vertex.
* Compute a path 'randomly'.

Overview

* We want a family of graphs $\left\{G_{i}\right\}$
* Choose a graph from this family and a starting vertex.
* Compute a path 'randomly'.

Intuition:

1. When the path is long enough, the end point could be anywhere (pseudorandom).
2. Given starting and ending vertices, finding a path is hard.

Overview

* We want a family of graphs $\left\{G_{i}\right\}$
* Choose a graph from this family and a starting vertex.
* Compute a path 'randomly'.

Intuition:

1. When the path is long enough, the end point could be anywhere (pseudorandom).
2. Given starting and ending vertices, finding a path is hard.

Question

What does a suitable family of graphs look like?

Adjacency Matrix, Regular graphs

An adjacency matrix A of a graph on n vertices is an $n \times n$ matrix where each $a_{i, j}=\#$ edges from i-th vertex to j-th vertex.

Example

For G above, $A=\left[\begin{array}{llll}0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 0 & 2 & 1 & 1 \\ 2 & 0 & 1 & 0\end{array}\right]$.

* A graph is d-regular if each vertex is adjacent to d others.
* We call a d-regular graph on n vertices an $[n, d]$-graph.

Graph Spectrum

* If a graph G is undirected, the adjacency matrix A is symmetric and real $\Longrightarrow n$ eigenvalues.

Definition (Graph Spectrum)

The spectrum of a graph is the set of eigenvalues $\lambda_{1}, \ldots \lambda_{n}$ of adjacency matrix A where:

$$
d \geq \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n} \geq-d
$$

for $d \in \mathbb{Z}$.

Graph Spectrum

* If a graph G is undirected, the adjacency matrix A is symmetric and real $\Longrightarrow n$ eigenvalues.

Definition (Graph Spectrum)

The spectrum of a graph is the set of eigenvalues $\lambda_{1}, \ldots \lambda_{n}$ of adjacency matrix A where:

$$
d \geq \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n} \geq-d
$$

for $d \in \mathbb{Z}$.
Some useful properties of graph spectrum:

* If G is d-regular, then $\lambda_{1}=d$.
* G is bipartite if.f $\lambda_{1}=-\lambda_{n}$.
* G is connected if.f $\lambda_{1}>\lambda_{2}$.

Algebraic Definition: Spectral Gap

Given an $[n, d]$-graph G with spectrum
$d=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n} \geq-d:$

* Let $\lambda(G):=\max \left(\left\{\left|\lambda_{2}\right|, \ldots,\left|\lambda_{n}\right|\right\}\right)$ (usually just λ_{2}).
* $d-\lambda(G)$ is the spectral gap.
* If non-zero, this graph is called an expander.
* $\left\{G_{i}\right\}$ is an expander family (increasing in size) if for all G_{i}, $d-\lambda\left(G_{i}\right)$ meets some fixed lower bound.

Expander Mixing Lemma

Theorem

The number of edges between any two large vertex subsets in a good expander graph, is close to the average amount of edges between two vertex subsets in a random $[n, d]$-graph.

* Corollary: random walks on the graph converge to uniform distribution in $O(\log (n))$ steps.

Ramanujan Graphs

Definition (Ramanujan Graphs)

If G is an $[n, d]$-graph, then it is Ramanujan if:

$$
d-2 \sqrt{d-1} \leq d-\lambda(G) \leq d-2 \sqrt{d-1}+\epsilon
$$

for $\epsilon>0$ where $\epsilon \rightarrow 0$ as $n \rightarrow \infty$.

* All expander graphs satisfy the upper bound.
* Bigger $d-\lambda(G)$ term \Longrightarrow better expander.
* Ramanujan graphs are (asymptotically) the best expanders but hard to come by.

Problem

Does there exist infinite families of d-regular Ramanujan graphs for each $d \geq 3$?

Constructing Expander Graphs

Two types of construction. Given an infinite family $\left\{G_{i}\right\}$ of expander-graphs:

* Weakly Explicit: G_{i} can be constructed in polynomial time.
(Polynomial in \# vertices).
* Strongly Explicit: Given $i \in \mathbb{N}$, a vertex $v \in V\left(G_{i}\right)$, the neighbours of v can be computed in polynomial time. (Polynomial in length of input (i, v)).

Expanders: What we know so far

* Ramanujan graphs are optimal expanders.
* Good expanders are sparse and finding paths on them is 'hard'.
* Can we use them in cryptography?

One Way Functions, Pseudorandom Generators and Pseudorandom Functions

Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a function that is efficient to compute.

* f is a one-way function, if given f, some $f(x) \in \mathcal{Y}$, it is hard to compute an $x^{\prime} \in \mathcal{X}$ such that $f\left(x^{\prime}\right)=f(x)$.
* f is a pseudorandom function, if f is indistinguishable from a uniform function when queried. (instantiated with a secret key)

One Way Function from Expanders

* On a 'good' $[n, d]$ expander graph
G. Pick a starting adjacent vertex pair $\left(v_{-1}, v_{0}\right)$.

One Way Function from Expanders

* On a 'good' $[n, d]$ expander graph
G. Pick a starting adjacent vertex pair $\left(v_{-1}, v_{0}\right)$.
* Input: string $x_{1} x_{2} . . x_{k}$ of alphabet $\{0, . ., d-2\}$.

One Way Function from Expanders

* On a 'good' $[n, d]$ expander graph
G. Pick a starting adjacent vertex pair $\left(v_{-1}, v_{0}\right)$.
* Input: string $x_{1} x_{2} . . x_{k}$ of alphabet $\{0, . ., d-2\}$.
* for i in $\{1, \ldots, k\}$:
* Set v_{i} to be the x_{i} th vertex adjacent to v_{i-1} (not including
 $\left.v_{i-2}\right)$.

One Way Function from Expanders

* On a 'good' $[n, d]$ expander graph G. Pick a starting adjacent vertex pair $\left(v_{-1}, v_{0}\right)$.
* Input: string $x_{1} x_{2} . . x_{k}$ of alphabet $\{0, . ., d-2\}$.
* for i in $\{1, \ldots, k\}$:
* Set v_{i} to be the x_{i} th vertex adjacent to v_{i-1} (not including
 $\left.v_{i-2}\right)$.
* Output: v_{k}.

One Way Function from Expanders

* On a 'good' $[n, d]$ expander graph G. Pick a starting adjacent vertex pair $\left(v_{-1}, v_{0}\right)$.
* Input: string $x_{1} x_{2} . . x_{k}$ of alphabet $\{0, . ., d-2\}$.
* for i in $\{1, \ldots, k\}$:
* Set v_{i} to be the x_{i} th vertex adjacent to v_{i-1} (not including $\left.v_{i-2}\right)$.
* Output: v_{k}.

Example: Traversing $f(" 01 ")$ on a 3-regular graph

One Way Function from Expanders

* On a 'good' $[n, d]$ expander graph G. Pick a starting adjacent vertex pair $\left(v_{-1}, v_{0}\right)$.
* Input: string $x_{1} x_{2} . . x_{k}$ of alphabet $\{0, . ., d-2\}$.
* for i in $\{1, \ldots, k\}$:
* Set v_{i} to be the x_{i} th vertex adjacent to v_{i-1} (not including $\left.v_{i-2}\right)$.
* Output: v_{k}.

Example: Traversing $f(" 01 ")$ on a 3-regular graph

Choosing Our 'Good' Graph

Ramanujan graph G is 'good' if:

* strongly explicit,
* exponentially large vertex set,
* little symmetry,
* hard to find cycles on.

Proposals:

* LPS graphs: Cayley graph of $\operatorname{PSL}(2, p)$. Pre-image resistance broken by Petit 2008.
* Supersingular Isogeny Graphs: still (believed) secure!

Elliptic Curves and Isogenies

* Elliptic curves.
$y^{2}=x^{3}+a x+b$ Algebraic and geometric structure. Set of solutions over a field form a group.
* Maps between elliptic curves are called isogenies.
Isogenies preserve group \& geometric structure.
* Degree of an isogeny is the size of it's kernel (as a group homomorphism).

Figure 1: Group operation on
$y^{2}=x^{3}-4 x+7$

Supersingular ℓ-Isogeny graphs

* An elliptic curve is ordinary or supersingular.
* $G_{\ell}(p)$: Supersingular elliptic curves defined over $\mathbb{F}_{p^{2}}$ (up to isomorphism) form a graph with degree ℓ isogenies as edges.
* The graph is 'good'. Ramanujan, $\left\lfloor\frac{p}{12}\right\rfloor$ vertices, $\ell+1$ regular (for prime ℓ) and strongly explicit.
* Vertices are usually represented by the j-invariant, which corresponds to a single field element in $\mathbb{F}_{p^{2}}$ (1-1 correspondence)

Figure 2: Supersingular isogeny graph $G_{2}(97)$

Computational Assumption: Isogeny Paths

Problem (IsoPath)

Given j-invariants of two elliptic curves defined over $G_{\ell}(p)$, find a path between them.

* Closely related to the strong expansion properties of the graph.
* Cryptanalysis: best quantum attacks are still exponential time. $\sim \tilde{O}\left(p^{\frac{1}{3}}\right)$

The CGL One Way Function

The CGL function below, where $G_{2}(p)$ is a 3-regular family of expanders for increasing p. For security, $p \gg 22^{256}$.

Algorithm $1 h\left(m, j_{0}, j_{-1}, \operatorname{Sqr}().\right)$

Input: An n bit binary string $m=m_{n-1}\|\ldots\| m_{0}$, adjacent vertices j_{0}, j_{-1} in $G_{2}(p)$, and a deterministic square root algorithm Sqr for $\mathbb{F}_{p^{2}}$.
Output: Vertex j_{n} corresponding to the end point of the walk given by m.

```
1: for \(i\) in \(0, \ldots, n-1\) do
2: \(\quad s_{i} \leftarrow+1\) if \(m_{i}=1,-1\) if \(m_{i}=0\)
3: \(\quad a_{i} \leftarrow-j_{i}^{2}+1488 j_{i}-162000\)
4: \(\quad b_{i} \leftarrow 1488 j_{i}^{2}+40773375 j_{i}+8748000000\)
5: \(\quad D_{i} \leftarrow\left(a_{i}+j_{i-1}\right)^{2}-4\left(b_{i}+a_{i} j_{i-1}+j_{i-1}^{2}\right)\)
6: \(\quad S_{i} \leftarrow \operatorname{Sqr}\left(D_{i}\right)\)
    \(j_{i+1} \leftarrow 2^{-1}\left(-a_{i}-j_{i-1}+s_{i} S_{i}\right)\)
    end for
    return \(j_{n}\)
```


An idea: Pseudorandom Function Candidate from CGL

Given $G_{2}(p)$ and a starting vertex $v_{0}, F_{k}(m)$ is computed as follows:

1. Walk the graph starting at v_{0}, based on the base-2 encoding of m, finishing on v_{a}
2. Walk the graph again, starting at v_{a} based on the base-2 encoding of k, finishing on v_{b}.
$h\left(m, v_{0}, v_{-1}\right) \quad h\left(k, v_{a}, v_{a-1}\right)$
$v_{-1} \longrightarrow v_{0} \longrightarrow v_{1} \longrightarrow \ldots \longrightarrow v_{a-1} \longrightarrow v_{a} \longrightarrow v_{a+1} \longrightarrow \ldots \longrightarrow v_{b-1} \longrightarrow v_{b}$

An idea: Pseudorandom Function Candidate from CGL

Given $G_{2}(p)$ and a starting vertex $v_{0}, F_{k}(m)$ is computed as follows:

1. Walk the graph starting at v_{0}, based on the base-2 encoding of m, finishing on v_{a}
2. Walk the graph again, starting at v_{a} based on the base- 2 encoding of k, finishing on v_{b}.
$h\left(m, v_{0}, v_{-1}\right) \quad h\left(k, v_{a}, v_{a}-1\right)$
$v_{-1} \longrightarrow v_{0} \longrightarrow v_{1} \longrightarrow \ldots \longrightarrow v_{a-1} \longrightarrow v_{a} \longrightarrow v_{a+1} \longrightarrow \ldots \longrightarrow v_{b-1} \longrightarrow v_{b}$

Question

Why doesn't this work if you switch the steps around?

Applications of OWFs and PRFs: Signatures

Given a zero-knowledge, non-interactive proof system and uniformly random secret key sk:

* OWF: $\mathrm{pk}=O W F(\mathrm{sk})$ and signature is a proof: "I know a sk such that $O W F(\mathrm{sk})=\mathrm{pk}$ " with m incorporated into the randomness of the proof.

Applications of OWFs and PRFs: Signatures

Given a zero-knowledge, non-interactive proof system and uniformly random secret key sk:

* OWF: $\mathrm{pk}=O W F(\mathrm{sk})$ and signature is a proof: "I know a sk such that $\operatorname{OWF}(\mathrm{sk})=\mathrm{pk}$ "
with m incorporated into the randomness of the proof.
* PRF: pk $=\operatorname{PRF}_{\text {sk }}(\mathbf{0})$), and signature is $\operatorname{PRF}_{\text {sk }}(m)$ attached with a proof:
"I know a sk such that I can compute both $P R F_{\text {sk }}(m)$ and $P R F_{\text {sk }}(0) "$.

Our work - generic proof systems

* Efficient Isogeny Proofs Using Generic Techniques - Cong, Lai, Levin - Submitted to ACNS 2023.
* Apply generic proof systems (Aurora, Ligero, Limbo) to isogeny paths:
"I know a path between the two elliptic curves"
with message incorporated into the randomness of the proof

Thank you!

Example: A Strongly Explicit Family of Expanders

Margulis Construction (Discrete Torus Expanders): A family of 8-regular graphs $G_{i}=\left(V_{i}, E_{i}\right)$ for $i \in \mathbb{Z}^{+}$:

$$
* V_{i}=\mathbb{Z}_{i} \times \mathbb{Z}_{i}
$$

* An edge from each vertex (x, y) to $(x \pm y, y),(x, y \pm x)$, $(x \pm y+1, y),(x, y \pm x+1)$. (arithmetic mod $i)$
* G_{i} is a $\left[i^{2}, 8, \frac{5 \sqrt{2}}{8}\right]$ family of expanders where $\lambda\left(G_{i}\right) \rightarrow 2 \sqrt{8-1}$ as $i \rightarrow \infty$.

PRF Reformulated: Vélu Formula Approach

We can reformulate the PRF in a similar way:

* Starting with an Elliptic Curve E over $\mathbb{F}_{p^{2}}$ where $p=2^{a} \pm 1$
* Let P_{0}, Q_{0} be a basis for the torsion subgroup $E\left[2^{a}\right]$.
* Define

$$
\begin{gathered}
F_{k}(m): \mathcal{K} \times \mathcal{M} \rightarrow \mathbb{F}_{p^{2}} \\
(k, m) \mapsto E /\left\langle P_{0}+\left[2^{\frac{a}{2}} k+m\right] Q_{0}\right\rangle
\end{gathered}
$$

* With message and key space $\mathcal{M}=\mathcal{K}=\mathbb{Z}_{2^{\mathrm{a} / 2}}$

