Expander Graphs in Cryptography

Shai Levin Supervisor: Steven Galbraith January, 2023

University of Auckland, New Zealand

Expander Graphs

On a 'good' expander graph:

- Path finding is hard when the number of vertices is (exponentially) large.
- Random walks converge to the uniform distribution.

In Computer Science:

- Efficient error correcting codes
- Fault-tolerant networks
- Cryptographic pseudorandom behaviour:
 - Cryptographic hash functions or one way functions.
 - pseudorandom functions (?)

- * We want a family of graphs $\{G_i\}$
- * Choose a graph from this family and a starting vertex.
- Compute a path 'randomly'.

- We want a family of graphs $\{G_i\}$
- * Choose a graph from this family and a starting vertex.
- Compute a path 'randomly'.

Intuition:

- 1. When the path is long enough, the end point could be anywhere (pseudorandom).
- 2. Given starting and ending vertices, finding a path is hard.

- * We want a family of graphs $\{G_i\}$
- Choose a graph from this family and a starting vertex.
- Compute a path 'randomly'.

Intuition:

- 1. When the path is long enough, the end point could be anywhere (pseudorandom).
- 2. Given starting and ending vertices, finding a path is hard.

Question

What does a suitable family of graphs look like?

Adjacency Matrix, Regular graphs

An *adjacency matrix* A of a graph on n vertices is an $n \times n$ matrix where each $a_{i,j} = \#$ edges from *i*-th vertex to *j*-th vertex.

Example

For *G* above,
$$A = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & 1 \\ 2 & 0 & 1 & 0 \end{bmatrix}$$
.

- * A graph is *d*-regular if each vertex is adjacent to *d* others.
- * We call a *d*-regular graph on *n* vertices an [n, d]-graph.

* If a graph G is undirected, the adjacency matrix A is symmetric and real \implies n eigenvalues.

Definition (Graph Spectrum)

The *spectrum* of a graph is the set of eigenvalues $\lambda_1, ... \lambda_n$ of adjacency matrix A where:

$$d \geq \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \geq -d$$

for $d \in \mathbb{Z}$.

* If a graph G is undirected, the adjacency matrix A is symmetric and real \implies n eigenvalues.

Definition (Graph Spectrum)

The *spectrum* of a graph is the set of eigenvalues $\lambda_1, ... \lambda_n$ of adjacency matrix A where:

$$d \ge \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n \ge -d$$

for $d \in \mathbb{Z}$.

Some useful properties of graph spectrum:

- * If G is d-regular, then $\lambda_1 = d$.
- * G is bipartite if $\lambda_1 = -\lambda_n$.
- * G is connected if $\lambda_1 > \lambda_2$.

Given an [n, d]-graph G with spectrum $d = \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n \ge -d$:

- * Let $\lambda(G) := max(\{|\lambda_2|, ..., |\lambda_n|\})$ (usually just λ_2).
- * $d \lambda(G)$ is the spectral gap.
- * If non-zero, this graph is called an *expander*.
- {G_i} is an expander family (increasing in size) if for all G_i,
 d λ(G_i) meets some fixed lower bound.

Expander Mixing Lemma

Theorem

The number of edges between any two large vertex subsets in a good expander graph, is close to the average amount of edges between two vertex subsets in a random [n, d]-graph.

 Corollary: random walks on the graph converge to uniform distribution in O(log(n)) steps.

Ramanujan Graphs

Definition (Ramanujan Graphs)

If G is an [n, d]-graph, then it is Ramanujan if: $d - 2\sqrt{d-1} \le d - \lambda(G) \le d - 2\sqrt{d-1} + \epsilon.$ for $\epsilon > 0$ where $\epsilon \to 0$ as $n \to \infty$.

- * All expander graphs satisfy the upper bound.
- Bigger $d \lambda(G)$ term \implies better expander.
- Ramanujan graphs are (asymptotically) the best expanders but hard to come by.

Problem

Does there exist infinite families of d-regular Ramanujan graphs for each $d \ge 3$?

Two types of construction. Given an infinite family $\{G_i\}$ of expander-graphs:

- Weakly Explicit: G_i can be constructed in polynomial time. (Polynomial in # vertices).
- Strongly Explicit: Given i ∈ N, a vertex v ∈ V(G_i), the neighbours of v can be computed in polynomial time. (Polynomial in length of input (i, v)).

- Ramanujan graphs are optimal expanders.
- Good expanders are sparse and finding paths on them is 'hard'.
- Can we use them in cryptography?

One Way Functions, Pseudorandom Generators and Pseudorandom Functions

Let $f : \mathcal{X} \to \mathcal{Y}$ be a function that is efficient to compute.

- * f is a one-way function, if given f, some $f(x) \in \mathcal{Y}$, it is hard to compute an $x' \in \mathcal{X}$ such that f(x') = f(x).
- *f* is a *pseudorandom function*, if *f* is indistinguishable from a uniform function when queried. (instantiated with a secret key)

On a 'good' [n, d] expander graph
 G. Pick a starting adjacent vertex pair (v₋₁, v₀).

- On a 'good' [n, d] expander graph
 G. Pick a starting adjacent vertex
 pair (v₋₁, v₀).
- ▶ Input: string x₁x₂..x_k of alphabet {0,.., d − 2}.

- On a 'good' [n, d] expander graph
 G. Pick a starting adjacent vertex pair (v₋₁, v₀).
- Input: string x₁x₂..xk of alphabet {0,.., d − 2}.
- * for *i* in $\{1, ..., k\}$:
 - Set v_i to be the x_ith vertex adjacent to v_{i-1} (not including v_{i-2}).

- On a 'good' [n, d] expander graph
 G. Pick a starting adjacent vertex pair (v₋₁, v₀).
- Input: string x₁x₂..xk of alphabet {0,.., d − 2}.
- * for *i* in $\{1, ..., k\}$:
 - Set v_i to be the x_ith vertex adjacent to v_{i-1} (not including v_{i-2}).

• Output: v_k.

- On a 'good' [n, d] expander graph
 G. Pick a starting adjacent vertex pair (v₋₁, v₀).
- ▶ Input: string x₁x₂..x_k of alphabet {0,.., d − 2}.
- * for *i* in $\{1, ..., k\}$:
 - Set v_i to be the x_ith vertex adjacent to v_{i-1} (not including v_{i-2}).
- Output: v_k.

Example: Traversing f("01") on a 3-regular graph

- On a 'good' [n, d] expander graph
 G. Pick a starting adjacent vertex pair (v₋₁, v₀).
- ▶ Input: string x₁x₂..x_k of alphabet {0,.., d − 2}.
- * for *i* in $\{1, ..., k\}$:
 - Set v_i to be the x_ith vertex adjacent to v_{i-1} (not including v_{i-2}).
- Output: v_k.

Example: Traversing f("01") on a 3-regular graph

Ramanujan graph G is 'good' if:

- strongly explicit,
- exponentially large vertex set,
- little symmetry,
- * hard to find cycles on.

Proposals:

- LPS graphs: Cayley graph of PSL(2, p). Pre-image resistance broken by Petit 2008.
- * Supersingular Isogeny Graphs: still (believed) secure!

Elliptic Curves and Isogenies

Elliptic curves.

 $y^2 = x^3 + ax + b$ Algebraic and geometric structure. Set of solutions over a field form a group.

- Maps between elliptic curves are called isogenies.
 Isogenies preserve group & geometric structure.
- Degree of an isogeny is the size of it's kernel (as a group homomorphism).

Supersingular *l*-Isogeny graphs

- An elliptic curve is ordinary or supersingular.
- * $G_{\ell}(p)$: Supersingular elliptic curves defined over \mathbb{F}_{p^2} (up to isomorphism) form a graph with degree ℓ isogenies as edges.
- * The graph is 'good'. Ramanujan, $\lfloor \frac{p}{12} \rfloor$ vertices, $\ell + 1$ regular (for prime ℓ) and strongly explicit.
- Vertices are usually represented by the *j*-invariant, which corresponds to a single field element in F_{p²} (1-1 correspondence)

Figure 2: Supersingular isogeny graph *G*₂(97)

Problem (IsoPath)

Given *j*-invariants of two elliptic curves defined over $G_{\ell}(p)$, find a path between them.

- Closely related to the strong expansion properties of the graph.
- * Cryptanalysis: best quantum attacks are still exponential time. $\sim { ilde O}(p^{1\over 3})$

The CGL One Way Function

The CGL function below, where $G_2(p)$ is a 3-regular family of expanders for increasing p. For security, $p \gg 2^{256}$.

Algorithm 1 $h(m, j_0, j_{-1}, Sqr(.))$

Input: An *n* bit binary string $m = m_{n-1}||...||m_0$, adjacent vertices j_0, j_{-1} in $G_2(p)$, and a deterministic square root algorithm Sqr for \mathbb{F}_{p^2} .

Output: Vertex j_n corresponding to the end point of the walk given by m.

1: for *i* in 0, ...,
$$n - 1$$
 do
2: $s_i \leftarrow +1$ if $m_i = 1, -1$ if $m_i = 0$
3: $a_i \leftarrow -j_i^2 + 1488j_i - 162000$
4: $b_i \leftarrow 1488j_i^2 + 40773375j_i + 8748000000$
5: $D_i \leftarrow (a_i + j_{i-1})^2 - 4(b_i + a_i j_{i-1} + j_{i-1}^2)$
6: $S_i \leftarrow \operatorname{Sqr}(D_i)$
7: $j_{i+1} \leftarrow 2^{-1}(-a_i - j_{i-1} + s_i S_i)$
8: end for
9: return j_n

Given $G_2(p)$ and a starting vertex v_0 , $F_k(m)$ is computed as follows:

- 1. Walk the graph starting at v_0 , based on the base-2 encoding of *m*, finishing on v_a
- 2. Walk the graph again, starting at v_a based on the base-2 encoding of k, finishing on v_b .

Given $G_2(p)$ and a starting vertex v_0 , $F_k(m)$ is computed as follows:

- 1. Walk the graph starting at v_0 , based on the base-2 encoding of *m*, finishing on v_a
- 2. Walk the graph again, starting at v_a based on the base-2 encoding of k, finishing on v_b .

Question

Why doesn't this work if you switch the steps around?

Given a zero-knowledge, non-interactive proof system and uniformly random secret key sk:

OWF: pk = OWF(sk) and signature is a proof:
 "I know a sk such that OWF(sk) = pk"
 with m incorporated into the randomness of the proof.

Given a zero-knowledge, non-interactive proof system and uniformly random secret key sk:

OWF: pk = OWF(sk) and signature is a proof: "I know a sk such that OWF(sk) = pk" with m incorporated into the randomness of the proof. **PRF:** pk = PRF_{sk}(0)), and signature is PRF_{sk}(m) attached with a proof: "I know a sk such that I can compute both

 $PRF_{sk}(m)$ and $PRF_{sk}(0)$ ".

- Efficient Isogeny Proofs Using Generic Techniques Cong, Lai, Levin - Submitted to ACNS 2023.
- Apply generic proof systems (Aurora, Ligero, Limbo) to isogeny paths:

"I know a path between the two elliptic curves"

with message incorporated into the randomness of the proof

Example: A Strongly Explicit Family of Expanders

Margulis Construction (Discrete Torus Expanders): A family of 8-regular graphs $G_i = (V_i, E_i)$ for $i \in \mathbb{Z}^+$:

- * $V_i = \mathbb{Z}_i \times \mathbb{Z}_i$
- * An edge from each vertex (x, y) to $(x \pm y, y)$, $(x, y \pm x)$, $(x \pm y + 1, y)$, $(x, y \pm x + 1)$. (arithmetic mod *i*)
- * G_i is a $[i^2, 8, \frac{5\sqrt{2}}{8}]$ family of expanders where $\lambda(G_i) \rightarrow 2\sqrt{8-1}$ as $i \rightarrow \infty$.

We can reformulate the PRF in a similar way:

- * Starting with an Elliptic Curve E over \mathbb{F}_{p^2} where $p=2^a\pm 1$
- Let P_0 , Q_0 be a basis for the torsion subgroup $E[2^a]$.
- Define

$$F_k(m): \mathcal{K} imes \mathcal{M} o \mathbb{F}_{p^2}$$

 $(k,m) \mapsto E/\langle P_0 + [2^{rac{2}{2}}k + m]Q_0
angle$

st With message and key space $\mathcal{M}=\mathcal{K}=\mathbb{Z}_{2^{a/2}}$