
Report 3: Exploring the Vulnerabilities of IoT Devices
Shai Levin

Foreword
In this report, we will discuss common vulnerabilities which are prevalent among
Internet-of-Things (IoT) devices, and the tools and techniques one can stage to attack
them. We will also discuss how these vulnerabilities might be addressed.

With the rise of the concept of Internet of Things, we see an increasing number of day to
day objects being connected to the web. This new age of computing is still in its early
ages, and as a consequence many security fundamentals are still lacking. Not unlike the
early days of the internet when security practices were still in their infancy. The
frequency of simple vulnerabilities being embedded in these smart devices is startling.
Attackers might exploit these to gain the ability to control your lights, or unlock your
door.

In this report we will take three experiments to demonstrate exactly this. In all cases
users will be interacting with their Smart devices via their android mobile phone. In
Section I we will crack a Bluetooth door lock, and open it. In Section II we will hijack a
connection to a thermostat and adjust it’s temperatures. In Section III we will do the
same with a WiFi connected lightbulb, adjusting it’s settings. In the TCP and UDP
experiments, we assume the attacker has access to the wireless network, and may have
cracked the wireless password similar to in Report 1. The Bluetooth attack has no
prerequisites but will require extensive eavesdropping before one can gain access to the
device.

Note most of these attacks employ the same fundamental concepts. They all involve
either or both of these:

1. A man-in-the-middle (MITM) attack. This is when an attacker intercepts
communications in a network between two parties, such that each party talks to
the attacker believing they are talking to the other party. Also known as Active
Eavesdropping.

2. Passive Eavesdropping. This is when an attacker listens to traffic over a wireless
network and captures it for nefarious use later.

A diagram of a general MITM attack is depicted below, where an attacker pretends to be
the server to the client, and pretends to be the client to the server. The attacker
intercepts a request, modifies it, and sends it to the server.

Section I: TCP based devices

We start with TCP based Smart devices as they are by far the most prevalent today. TCP is
frequently used as it guarantees reliable, in sequence communication. So what is the
problem? Well, it turns out, many of these devices communicate over TCP, perhaps as
HTTP or some proprietary application layer protocol. Frequently though, these protocols
are unencrypted! This key flaw is what allows attackers to view transmissions between
users' cellphone and their device in plaintext.

In this section we will analyse a wifi connected thermostat which is controlled by an app
on a user's cellphone. The thermostat has several modes: heat, cool, fan and off. It
operates at a variable temperature in fahrenheit. We will perform two experiments, one
a passive eavesdropping attack, and one active attack. In the latter we will perform a TCP
session hijack.

Tools Used

- Kali Linux OS
- WiPi or other mon mode supported wireless adapter
- airmon, wireshark, mitmproxy (for the active attack)

Kali and the software packages we use are free and easy to acquire. A mon mode
supported wireless adapter is reasonably inexpensive and can be purchased for less than
50 NZD.

Passive Attack

We use the network configuration below, where DHCP is enabled and 3 devices are
connected to the network:

1. Wifi enabled thermostat
2. Good faith actor with android mobile
3. Attacker with a Kali Linux machine connected with a monitor mode enabled

wireless device.

Now, we start by connecting the Kali machine to the wireless network. We kill the DHCP
process on the Kali machine, so it is covertly listening to the wireless network without
broadcasting it’s IP address. As such it may be assigned but we do not care what it is.

Next power on the thermostat. It should be configured to a static IP address on the access
point. We then start the airmon-ng process to enable monitoring of the network and it’s
respective channel number. We connect wireshark to the mon0 interface, and configure
decryption with the wireless password. As all wireless traffic is encrypted at the data link
layer, We need to have this started before the android starts communicating in order to

catch the EAPOL sequence so we can decrypt wireless communications between the
devices.

We then connect the android device to the network. The EAPOL sequence is shown
below via wireshark.

We can now operate the thermostat normally with the android app. Whenever an update
is sent, the kali machine can capture the request in plaintext. Noting that the thermostat
uses HTTP requests in plaintext with JSON payloads, which is a simple object type used
commonly in web traffic. Below are some JSON requests captured via wireshark,
demonstrating the user changing the operation mode. The attacker can use this
information to learn how the protocol controls the thermostat.

Active Attack

Next we use a similar network configuration to above, with some caveats. We need to
introduce a redirection mechanism so that mitmproxy can be used. We have put the
thermostat and android on two separate subnets so the router decides where to redirect
traffic at the network layer. Typically, this configuration might take place when a firewall
sits as a proxy on the router. We also configure our kali machine to redirect any TCP
traffic from the 192.168.1.XX subnet, and enable IP forwarding. This is where mitmproxy
comes in. It is a tool that acts as a proxy for the router, and controls where traffic should
be routed on the network, by knowing how to talk to each platform's redirection
mechanism. For the purpose of simplicity, we directly attach the Kali machine, but it can
still operate as if connected wirelessly.

We set up the Kali Linux machine to have two ethernet interfaces. One which will talk to
the thermostat, and one to the android device. We then start the mitmproxy process, and
now the Kali machine acts as a router between 192.168.1.XX and 192.168.0.XX networks.
We demonstrated several scripts in the lab which will modify the android devices
requests whenever they change the temperature on the app. Here are some of the
functions we tested.

1. Changing the temperature by a factor or +-10F
2. Swapping Heat and Cool modes

3. Forcing the thermostat on a specific temperature and mode, whilst still displaying
a false reading on the android app. This means the android user might be fooled
into thinking the device is operating normally, but is in fact being controlled by
the attacker.

Option 3 is the most interesting, and demonstrates a nefarious strategy. A user might not
even realise they are being sabotaged. Consider if this thermostat controlled a critical
infrastructure, such as a hot water cylinder or product freezer. This could cause huge
losses to a business or a safety hazard. This bears resemblance to many ICT hacks done
over the last several years, such as Stuxnet. An unprecedented attack that effectively
disabled the Iranian nuclear program.

Section II: UDP based devices
UDP based IoT devices will operate over a user's wireless network. Typically a device will
use UDP rather than TCP when it requires more fast, low latency updating, as UDP is
faster and simpler in design to TCP. However, UDP is severely lacking in aspects such as
reliability, and security. UDP based attacks are in some ways easier, and in some ways
harder than TCP. It is harder to intercept packets as with TCP with a MITM proxy as UDP
packets are connectionless, meaning they are ‘fast moving’ within a network. It might
not be possible for the attacker to intercept all packets between the user and the device.
However, it is easier in the sense that UDP packets do not guarantee their origin, so it is
possible to spoof UDP packets and send them to the device at a later date. In this lab we
will demonstrate an interception type attack. However, in the UDP case, it is likely much
easier to simply capture packets, modify them, and send them to the device at a later
time, rather than trying to directly intercept them.

We will demonstrate an attack against a Lifx Smart bulb using UDP connection. The Lifx
Smart bulb is controlled via a users android app, over a wireless network. The user can
adjust settings such as colour, intensity and white colour temperature.

Tools Used

- Kali Linux Machine connected via ethernet (but could equally be done with any
wireless adapter provided the attacker knows the password)

- Hexinject

It is quite critical that the Kali machine has a fast stable connection, as it needs to ‘catch’
the UDP packets before they are sent to the light bulb.

Attack

We use the network configuration described below, where DHCP is handled at a
back-end server on the network. This is similar to our TCP experiment 2, where we need
a point that the Kali machine can hijack the routing of traffic.

We configure IP forwarding on the Kali machine so that IP packets are forwarded across
two interfaces. We configure two interfaces for each subnet. Wireshark was also enabled
so we could capture the UDP traffic. Now, the attack is quite simple. Whenever the
android device attempts to transmit an update to the bulb, we use hexinject to intercept
these UDP packets and modify them to our desired effect. We tried several modifications
of these packets, namely:

1. When the bulb is turned on, the interception proxy modifies the packet to turn the
bulb off.

2. When a colour is altered, it is intercepted to change it to a fixed colour.
3. When intensity is changed to 100%, it is intercepted to turn the bulb off.

Again, it is likely much easier to simply capture these packets using wireshark, modify
them, and send them to the bulb at a later point. This would circumvent the issue of UDP
packets getting past the MITM proxy.

So what is the issue here? Well, it is twofold. Firstly, the UDP packets are completely
unencrypted and unauthenticated. Because it is unencrypted, an attacker can easily
read what the traffic is and modify it to their needs. Because it is unauthenticated, the
attacker can easily pose as the android device, and issue commands to the bulb.

Section III: Bluetooth 4.0 based devices
Bluetooth pairing is another extremely common feature of IoT devices. With several
modes of authentication in Bluetooth 4.0, there poses a risk of eavesdropping attacks.
The 4 modes are as follows, using a temporal key to negotiate pairing:
Just Works(™): The temporal key used for authentication is set to 0.
Passkey: The temporal key is a random 6 digit number passed between the device.
Out of Band pairing (OOB): A more secure version which uses a 128 bit temporal key
and a separate channel designed to be immune to BL eavesdropping.

If an attacker eavesdrops these pairing packets of the first two modes, it can very quickly
brute force crack the temporal key, and use this to derive the long term key. Bluetooth is
an extremely noisy protocol. There is lots of traffic in the air. However, if an attacker had
persistence and time, they could eventually capture a full handshake while being 10-20m
away from the device.

In this experiment we crack the key of a Bluetooth Quicklock doorlock. This Bluetooth 4.0
device uses the Just Works(™) mode of authentication.

Tools

- Ubertooth device
- Kali linux machine
- Crackle software package

The ubertooth is effectively a bluetooth monitoring device, which can listen to nearby
bluetooth traffic for capturing. Crackle is the tool we use to crack the bluetooth temporal
key.

Attack

The process is simplified in the diagram above. Before we begin the lock is set to a pin
that is connected to the SafeTech app on the first android device, but we unpair and
forget the device in the bluetooth settings. We configure our Ubertooth to pipe all
bluetooth traffic into a .pcap file on our Kali machine which we can inspect in wireshark.

Now we start the ubertooth capture and immediately begin the pairing process. We press
the pairing button on the lock, open the SafeTech app on the device and connect. At this
point we should have captured the handshake. We may need to repeat this process, but
in practice this capturing will be streamlined.

We then use crackle to decrypt the packets in our .pcap file. If we have captured the
handshake successfully, we get the following:

Now we can open the output of crackle decryption in wireshark. We are looking for a
value somewhere in the Bluetooth Attribute Protocol (btatt.opcode == 0x12).

Here we have the value of the decrypted password - 01234567 - padded with zeroes. Now,
we use a second android device and try to pair the device with the SafeTech app. We
enter the code and unlock the door.

As we can see here, a door lock device should not be using a temporal key of 0, nor even
a 6 digit pin - as that can still easily be cracked. The more secure mode of Bluetooth 4.0
authentication, Out of Band Pairing (OOB), might prevent this attack. The issue with OOB
is that it requires additional circuitry and manufacturers will be unwilling to add this as
it increases cost. Another solution would be using a Bluetooth 4.2 or 5.0 supported
device, but again, this suffers from compatibility and cost issues.

Conclusion

In conclusion, these are the primary issues facing IoT device security:

98% of IoT device traffic is unencrypted
According to a report by Unit 42, this shocking statistic shows how most IoT devices are
vulnerable to eavesdropping attacks similar to the ones we posed in this lab.

No separation of IoT assets and IT assets
Businesses might not be aware of the risks posed when a secure network containing
confidential IT assets is integrated with IoT devices. Once an attacker gains access to a
network, they may use these IoT devices to backdoor themselves into secure machines,
move laterally across the network, or gather intelligence about a business.

Cheap devices means cheap security
Consumers want the cheapest device to suit their needs. To save costs, cheap devices will
have weaker computing power and thus their security capability is constrained. The
common issue we saw with all the devices in this report was that they were made with
low cost in mind, and the security vulnerabilities they present reflect this.

How might one address these problems in their business environment?

1. Invest in quality IoT devices with a trusted pedigree.
The added cost of a device with secure authentication protocols is well worth it in
a business environment.

2. Isolate IoT communications within a business network
This minimises the risk of IoT vulnerabilities within your network.

3. Educate yourself on the vulnerabilities of IoT devices.
If managers and engineers are aware of the risks of using smart devices, they can
make more informed decisions on their strategy.

References:

- More on Bluetooth security and which options are eavesdrop resistant.
https://forum.digikey.com/t/a-basic-introduction-to-ble-4-x-security/12501

- Why 98% of IoT traffic is unencrypted
https://www.iot-now.com/2020/06/04/103245-why-98-of-iot-traffic-is-unencrypted/

- Report on IoT security
https://unit42.paloaltonetworks.com/iot-threat-report-2020/

- Diagrams made using draw.io

https://forum.digikey.com/t/a-basic-introduction-to-ble-4-x-security/12501
https://www.iot-now.com/2020/06/04/103245-why-98-of-iot-traffic-is-unencrypted/
https://unit42.paloaltonetworks.com/iot-threat-report-2020/

